
Config4
Practical Usage Guide

Version 1.2 30 September 2021

Ciaran McHale

www.con�g4star.org

Availability and Copyright

Availability

The Con�g4* software and its documentation (including this manual)
are available from www.con�g4star.org. The manuals are available in
several formats:

� HTML, for online browsing.

� PDF (with hyper links) formatted for A5 paper, for on-screen read-
ing.

� PDF (without hyper links) formatted 2-up for A4 paper, for print-
ing.

Copyright

Copyright© 2011�2021 Ciaran McHale (www.CiaranMcHale.com).

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation �les (the �Software�),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

� The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

� THE SOFTWARE IS PROVIDED �AS IS�, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTIONWITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Contents

1 Introduction 1

1.1 The Purpose of the Manual 1
1.2 Structure of this Manual 2

I Straightforward Uses of Con�g4* 3

2 Migrating from Another File Format 7

2.1 Introduction: Description of Problem 7
2.2 Solution . 7

3 Preferences for a GUI Application 9

3.1 Introduction: GUI Preferences 9
3.2 Persisting Preferences . 9
3.3 Using Con�g4* to Persist Preferences 10

4 Code Generation 13

4.1 Introduction . 13
4.2 Overview of CORBA IDL 13
4.3 Architecture of an IDL Compiler 14
4.4 Repetitive Application-level Code 15
4.5 Architecture of idlgen . 15
4.6 Bene�ts of Code Generation 16
4.7 Using Con�guration in Code Generation 17
4.8 Comparison with Annotations in Java 5 21

5 Server Applications 25

5.1 Introduction . 25
5.2 Validation Checks for Parameters 25

i

5.3 Dispatch Rules . 30
5.4 Summary . 35

6 Test Suites 37

6.1 Introduction . 37
6.2 Regression Test Suite . 37
6.3 Performance Test Suite 39
6.4 Summary . 45

II Con�guration-driven Object Creation 47

7 Limitations of the "uid-" Pre�x 51

7.1 Introduction . 51
7.2 Approach 1: With "uid-" Entries 52
7.3 Approach 2: Without "uid-" Entries 55
7.4 When to use the "uid-" Pre�x 57
7.5 Summary . 58

8 The Spring Framework 61

8.1 Introduction . 61
8.2 Terminology . 61
8.3 Reducing the Verbosity of Spring Beans 62
8.4 The Bene�ts of @include 64
8.5 The Bene�ts of @copyFrom 65
8.6 The Bene�ts of Pre-set Variables 65
8.7 Summary . 69

III The Con�g4JMS Case Study 71

9 Overview of JMS 75

9.1 Introduction . 75
9.2 Terminology and Concepts 75
9.3 Portability . 76
9.4 Problems with JMS . 77

9.4.1 Books and Manuals Advocate the Legacy API . . 77
9.4.2 Confusingly Many Initialisation Steps 78
9.4.3 Requiring Programmers to Learn Administration

Skills . 78
9.4.4 Only Partial Portability in JMS 79

ii

9.5 Critique: The 80/20 Principle 80

10 Con�g4JMS Functionality 83

10.1 Introduction . 83
10.2 Syntax . 83
10.3 API . 86

10.3.1 Basic Usage . 86
10.3.2 Other Operations 90

10.4 Accessing Proprietary Features 91
10.5 Bene�ts . 93

10.5.1 Code Readability 93
10.5.2 Con�gurability . 94
10.5.3 A Portable Way to Use Proprietary Features . . . 94
10.5.4 Reusability of Demonstration Applications 95

10.6 Drawbacks . 97
10.6.1 Only Two Implementations So Far 97
10.6.2 Lack of Support for Legacy API 97

10.7 Summary . 97

11 Architecture of Con�g4JMS 99

11.1 Introduction . 99
11.2 Packages . 99
11.3 Important Classes . 100

11.3.1 The Info Class . 100
11.3.2 The TypeDefinition Class 102
11.3.3 The TypesAndObjects Class 102

11.4 Algorithms Used in Con�g4JMS 103
11.4.1 Initialisation . 103
11.4.2 Schema Validation 105
11.4.3 The createJMSObjects() Operation 108

11.5 Comparison with Spring 108
11.6 Future Maintenance . 109
11.7 Summary . 109

Bibliography 111

iii iv

Chapter 1

Introduction

1.1 The Purpose of the Manual

Sometimes, when a new programming/programmable technology is re-
leased, it can take developers several years to �gure out how they can
exploit the technology to best e�ect.

For example, let's assume that Sony or Nintendo release a new video
game console that is signi�cantly more powerful than the current gener-
ation of game consoles. The games released soon after the launch of this
new games console may well be very enjoyable, but they are unlikely to
push the console to the limits of its capabilities. It is likely to be the
games that are released a few years after the console's launch that will
fully exploit its capabilities.

By default, one might expect that developers will initially use Con-
�g4* in simple ways�for example, to process a handful of variables in
a runtime con�guration �le�and only after several months or years will
developers �gure out how to use Con�g4* in more adventurous ways that
exploit its full capabilities.

This manual provides some shortcuts on that road to enlightenment.
As I explain in the History chapter of the Con�g4* Maintenance Guide,
the maturing of Con�g4* from its inception to its �rst public release
took place over almost 15 years. During those years, I used prototype
versions of Con�g4* in personal projects. This extensive use of Con�g4*
has given me insights into how Con�g4* can be used in non-trivial ways.
In this manual, I share many of those insights, so readers can learn to
properly exploit Con�g4* sooner rather than later.

1

2 CHAPTER 1. INTRODUCTION

1.2 Structure of this Manual

The chapters in this manual are grouped into three parts.
The chapters in Part I provide examples of relatively straightforward

ways to use Con�g4* for a wide variety of purposes.
Part II discusses issues associated with using a con�guration �le to

specify details for the creation and initialisation of objects.
Part III provides a case study of how Con�g4* is used in Con�g4JMS,

which is a library that simpli�es use of the Java Message Service (JMS).

Part I

Straightforward Uses of

Con�g4*

3

Introduction to Part I

The chapters in Part I provide examples of relatively straightforward
ways to use Con�g4*. If there is any logic to the sequencing of chapters
here, it is that I have arranged them in approximate order of increasing
complexity. But, in general, each chapter in Part I is self-contained.
This makes it feasible to read the chapters out-of-sequence, or to read a
single chapter that matches your interests and ignore the rest.

5

6

Chapter 2

Migrating from Another

File Format

2.1 Introduction: Description of Problem

Consider the following scenario. Your company has been selling an ap-
plication for the past �ve years and, up until now, that application has
used, say, an XML �le to store its con�guration information. You are
designing an updated version of the application, and you would like to
switch from using XML to Con�g4* for its con�guration �le. There is
just one problem: you need to �nd a way for users to be able to automat-
ically convert their existing XML-based con�guration data into Con�g4*
format. How can you achieve this goal?

2.2 Solution

An easy way to help users migrate from, say, an XML �le format to
Con�g4* is to write a program that does the following:

1. Call Configuration.create() to create an empty con�guration ob-
ject.

2. Parse an input XML �le and store the result in a DOM tree.

3. Traverse the DOM tree and, for each name-value pair you en-
counter, call cfg.insertString() or cfg.insertList() to add the
name-value pair into the con�guration object.

7

8 CHAPTER 2. MIGRATING FROM ANOTHER FILE FORMAT

4. When you have �nished traversing the DOM tree, call cfg.dump()
to get a textual representation of all the con�guration information,
and write this to a con�guration �le.

That's all that is required.

Chapter 3

Preferences for a GUI

Application

3.1 Introduction: GUI Preferences

Many applications expose their con�guration �les to users. If a user
wishes to recon�gure such an application, then he or she uses a text
editor to modify its con�guration �le. That approach is common for
applications that do not have a graphical user interface (GUI). However,
in GUI-based applications, it is common for con�guration changes to be
made through the GUI itself rather than through an external text editor.

For example, when using a GUI application on Microsoft Windows,
you can typically use the Tools→Options. . . menu item to open a tabbed
dialogue box that enables you to modify the application's con�guration.
The equivalent menu item in GUI applications running on UNIX-based
operating systems is often Edit→Preferences.

3.2 Persisting Preferences

When you make changes to the �preferences� or �options� of a GUI-based
application, the application saves those changes to a (hidden) con�gura-
tion �le, so that if you quit the application and restart it, then the ap-
plication can reload the most recent set of con�guration values. A GUI
application on Microsoft Windows typically uses the Windows Registry
as its �hidden con�guration �le�. A GUI application running on UNIX

9

10 CHAPTER 3. PREFERENCES FOR A GUI APPLICATION

might use a Java properties �le or an XML �le for the same purpose.

3.3 Using Con�g4* to Persist Preferences

You may be wondering if, when developing a GUI application, you could
use Con�g4* to store the application's preferences/options. Unfortu-
nately, I do not know the answer to that. This is because I do not have
much experience with developing GUI applications, and hence cannot
o�er knowledgeable advice.

I suspect that most GUI applications are built with the aid of a frame-
work library that simpli�es the development of such applications. For all
I know, such framework libraries might automate the saving and loading
of preferences/options data. If that is the case, then those framework
libraries are probably programmed to use, say, the Windows Registry or
an XML �le. If this assumption is correct, then it will probably be easier
for you to use that provided functionality rather than try to modify the
framework library (or work around it) to use a Con�g4* �le instead.

However, perhaps some readers will be building a GUI application
without the aid of such a framework library. Or perhaps some readers
want to implement a new framework library that simpli�es the devel-
opment of GUI applications. If such readers want to consider using
Con�g4*, then I o�er the following advice:

� Read a Con�g4* con�guration �le in the usual way, that is, by
creating an empty Configuration object and then calling parse().
However, also use fallback con�guration so that a GUI application
can work �out of the box�.

� When the user modi�es some of the preferences/options via the
GUI, call cfg.insertString() or cfg.insertList() to insert (or up-
date) the corresponding entries in the con�guration object. Then
call cfg.dump() to get a textual representation of all the con�gu-
ration information, and write this to the application's hidden con-
�guration �le.

� You might want to read the discussion of the dump command in
the The config4cpp and config4j Utilities chapter of the Con�g4*
Getting Started Guide. That discussion explains why reading a
Con�g4* �le and then dumping it back again does not preserve
adaptable con�guration that had been present in the original �le.

3.3. USING CONFIG4* TO PERSIST PREFERENCES 11

Keep that limitation in mind when designing your framework li-
brary or GUI application.

12 CHAPTER 3. PREFERENCES FOR A GUI APPLICATION

Chapter 4

Code Generation

4.1 Introduction

There is a wide variety of domain-speci�c code generation tools that
can generate repetitive code via a user-written template or script �le.
Often, such tools could be made more �exible by equipping them with a
con�guration-�le parser. In this chapter, I illustrate this by describing
a code generation tool that I developed.

Before describing the code generation tool, I �rst need to provide
some background information.

4.2 Overview of CORBA IDL

There are many competing technologies that can be used to build client-
server applications. One such technology, CORBA, is a standard for an
object-oriented version of remote procedural calls.

One feature central to CORBA is the interface de�nition language
(IDL). An IDL �le serves a purpose similar to a Java interface or a
C++ header �le: it de�nes a public interface. More speci�cally, an IDL
�le de�nes the public interface(s) of a server application.

IDL provides primitive types such as boolean, short, long, float,
char and string. IDL also provides constructed types, including struct

(similar to a C struct), a union (similar to a variant record in Pascal),
and sequence (roughly similar to a std::vector in C++ or an ArrayList

in Java). All these types can be used as parameters to operations de�ned

13

14 CHAPTER 4. CODE GENERATION

in an interface.

Each CORBA product provides an IDL compiler that translates the
types de�ned in an IDL �le into corresponding types in a programming
language (most commonly C++ or Java, but some CORBA products
support other languages, such as C, Ada, SmallTalk, Cobol, PL/I, LISP,
or Python). Thus, for example, a C++ programmer can manipulate an
IDL struct through its C++ representation, while a Java programmer
can manipulate it through its Java representation. An IDL interface is
translated into two types in a programming language: a client-side proxy
class and a server-side skeleton class. When a client wants to invoke
an operation on a remote object in a server process, the client invokes
the operation on a local proxy object, which marshals the invocation
request into a binary bu�er, sends that bu�er across the network to the
server application, and waits for the reply. A server-side skeleton object
unmarshals the incoming request, dispatches it to the target object, then
marshals the reply and transmits it across the network to the client.

4.3 Architecture of an IDL Compiler

The architecture of a typical IDL compiler is shown in Figure 4.1. A
parser analyses an input IDL �le, performs semantic checks, and builds
an in-memory representation, called an abstract syntax tree (AST), of
what it has parsed.

Figure 4.1: Architecture of an IDL compiler

IDL
parser

AST Back-end
Code

generator
IDL
file

generated
code

When parsing is �nished, control is then passed to the back-end code
generator. The code generator traverses the AST (perhaps several times)
and uses print statements to generate code. By the way, that high-level
architecture is not unique to IDL compilers; compilers for a great many
languages are likely to share a broadly similar architecture.

4.4. REPETITIVE APPLICATION-LEVEL CODE 15

4.4 Repetitive Application-level Code

In 1995, I started working in the consultancy and training department of
a CORBA vendor (IONA Technologies), When working on consultancy
assignments, I noticed it was common for CORBA server applications
to contain signi�cant amounts of repetitive code. For example, let's
suppose you want to put a CORBA server �wrapper� around a legacy
system. If the legacy system has, say, 50 public operations, then you
might de�ne one or more CORBA IDL interfaces that, between them,
contain a similar number of IDL operations. When you start to imple-
ment the CORBA server, you will quickly notice that each operation is
implemented in a similar manner:

� Perform data-type translation to convert each input parameter
from its IDL type to the corresponding legacy type.

� Then call the legacy operation that corresponds to the IDL oper-
ation.

� Finally, perform data-type translation to convert each output pa-
rameter from its legacy type to the corresponding IDL type.

It is not uncommon for there to be many thousands (or even tens of
thousands) of lines of repetitive code in such server applications.

Writing thousands of lines of repetitive code by hand is error-prone
and can quickly become a maintenance nightmare. I decided to design a
code-generation tool that could automate the generation of such repeti-
tive code.

4.5 Architecture of idlgen

The code-generation tool I developed became known as idlgen, which
was a contraction of IDL code generator. The high-level architecture for
idlgen is shown in Figure 4.2.

If you compare Figures 4.1 and 4.2, you will notice that idlgen has
an architecture very similar to that of an IDL compiler. However, there
are a few di�erences, as I now discuss.

The biggest di�erence is that idlgen replaces the �xed back-end code
generator with an interpreter for a scripting language called Tcl.1 Doing

1Here are some details for interested readers. The Tcl interpreter is packaged as a
library of C functions, and the library contains a hash table that provides a mapping

16 CHAPTER 4. CODE GENERATION

Figure 4.2: Architecture of idlgen

IDL
parser

AST Tcl
interpreter

IDL
file

generated
code

Tcl
script

(genie)

this makes it possible to write a back-end code generator as a Tcl script.
The term genie is used to refer to a �code genieration script�.

Another, but more minor, di�erence is that a genie is not �just� a
back-end code generator to which control is passed after an input �le
has been successfully parsed. Instead, a genie (also) acts as the mainline
of the code generator. It is the genie that calls the parser to parse an
input IDL �le. When parsing is complete, control returns to the genie,
which can then traverse the AST and generate code. Allowing the genie
to control the mainline provides some �exibility. For example, each genie
can decide what command-line options it will support.

4.6 Bene�ts of Code Generation

I found that, when writing back-end code generators in Tcl, I was up
to 100 times more productive than writing back-end code generators in

from the name of a command to a C function that implements the command. You
can extend the Tcl interpreter with a new command called, say, foo, by writing a
C function that implements the desired functionality, and then registering that C
function with the name foo in the Tcl interpreter's hash table. Once you have done
that, the (now extended) Tcl interpreter can execute scripts that contain the foo

command. When implementing idlgen, I used this technique to put a Tcl wrapper
around the parser, and Tcl wrappers around each node in the AST produced by the
parser.
I chose Tcl because, at the time, it was one of the few scripting languages that had

been designed to be extensible. Since then, scripting languages that are designed (or
retro�tted) to be extensible are more common. If I were designing idlgen today, then
I might be tempted to use Python or Lua instead because they are arguably better
scripting languages and have a less unusual syntax.

4.7. USING CONFIGURATION IN CODE GENERATION 17

C++. Obviously, a Tcl-based code generator was not as fast as one im-
plemented in C++, but it was usually �fast enough�. For example, a
genie would typically generate C++ code about �ve or ten times faster
than a C++ compiler could compile that generated code. Thus, the rela-
tive slowness of a code generator implemented in an interpreted scripting
language was never a bottleneck in application development.

In many of my consultancy assignments, I realised that the cus-
tomer's project would require signi�cant amounts of repetitive code. In
such cases, I might spend two or three weeks writing a project-speci�c
genie that contained, say, 3000 lines of Tcl, and that genie would then
generate the tens (or even hundreds) of thousands of lines of repetitive
code required for the project.

My aim is not to engage in self-praise on the merits of idlgen. Rather,
I simply o�er it as an example of how, when a code generator is the right
tool for the job, then it can signi�cantly reduce the e�ort involved. I as-
sume that many other domain-speci�c code generators provide similarly
signi�cant increases in productivity.

4.7 Using Con�guration in Code Generation

You may be wondering, �What has idlgen got to do with Con�g4*?� The
answer is that idlgen has two built-in parsers: one for IDL, and another
for a predecessor of Con�g4*.2 The presence of this con�guration parser
greatly enhances the �exibility, and hence power, of idlgen. I explain
why through the following example.

In Section 4.4, I explained how a project that puts a CORBA server
wrapper around a legacy system might require a signi�cant amount of
repetitive code. Let's assume you are working on such a project, and
the IDL �le you write for the CORBA server is similar to that shown in
Figure 4.3.

When the server application starts, it initially creates one Factory

object and one Administration object. An administration client con-
nects to the Administration object and invokes an operation to get in-
formation about the server's status, or to ask the server to gracefully
shutdown. Other client applications connect to the Factory object and
invoke create_foo() or create_bar(), which results in the server creating

2This predecessor supports a very limited subset of Con�g4*'s syntax: only
name=value (where the value could be a string or a list of strings), scopes and
an include command.

18 CHAPTER 4. CODE GENERATION

Figure 4.3: Example IDL �le

interface Foo {

void op1(...);

void op2(...);

...

void op20(...);

void destroy();

};

interface Bar {

void op21(...);

void op22(...);

...

void op50(...);

void destroy();

};

interface Factory {

Foo create_foo(...);

Bar create_bar(...);

};

interface Administration {

string get_server_status();

void shutdown_server();

};

a new Foo or Bar object on behalf of the client. (The �separate object for
each client� approach might be for, say, auditing or security purposes).
Then the client can invoke some of the operations on the newly created
object. Between them, the Foo and Bar interfaces contain 50 operations
(denoted as op1..op50 in the IDL �le) that wrap correspondingly named
operations in the legacy system. When the client is �nished, it invokes
destroy() to destroy the Foo or Bar object that the server had previously
created for it.

When writing a genie to generate repetitive code for the project,
you can code the genie so it parses not just an IDL �le, but also a
con�guration �le, such as that shown in in Figure 4.4.

Syntactically, the interface_type variable is a list, but its contents
are arranged as a two-column table that maps the name of an IDL inter-
face into a �type�: either singleton (meaning the server process contains
only only instance of the speci�ed interface) or dynamic (meaning that a
create-style operation is used to create instances of this interface dynam-
ically). Knowing this �type� of each IDL interface makes it possible for

4.7. USING CONFIGURATION IN CODE GENERATION 19

Figure 4.4: Con�guration �le for a genie

interface_type = [

name singleton/dynamic

#--------------------------------------

"Factory", "singleton",

"Administration", "singleton",

"Foo", "dynamic",

"Bar", "dynamic",

];

operation_type = [

wildcarded name type

#--------------------------------------

"Factory::create_*", "create",

"*::destroy", "destroy",

"Administration::*", "hand-written",

"Foo::op1", "query",

"Foo::op3", "query",

"Foo::op8", "query",

"Foo::op10", "query",

"Foo::*", "update",

"Bar::op27", "query",

"Bar::op32", "query",

"Bar::op33", "hand-written",

"Bar::op30", "query",

"Bar::*", "update",

];

code_segment_files = [

"some-code-segments.txt",

"more-code-segments.txt",

];

the genie to generate a main() function that creates one instance of each
singleton interface (and does not create instances of dynamic interfaces).

The operation_type table speci�es a �type� for each operation in all
the IDL interfaces. To keep this table short, the operation name can con-
tain "*", which is a wildcard that matches zero or more characters. For
example, "*::destroy" matches both Foo::destroy and Bar::destroy
(IDL uses "::" as the scoping operator). This enables the genie to use a
cascading if-then-else statement to decide what kind of code to generate
for the implementation of each IDL operation, as shown in the following
pseudocode:3

3Some scripting languages make it possible to use polymorphism (instead of a

20 CHAPTER 4. CODE GENERATION

foreach op in anInterface.listOperations() {

opType = op.getOperationType();

if (opType == "create") {

generate_create_operation(op);

} else if (opType == "destroy") {

generate_destroy_operation(op);

} else if (opType == "query") {

generate_query_operation(op);

} else if (opType == "update") {

generate_update_operation(op);

} else if (opType == "hand-written") {

opName = op.getFullyScopedName();

codeSegmentName = "implementation of " + opName + "()";

print(getCodeSegment(codeSegmentName));

} else {

error("unknown operation type: " + opType);

}

}

The assumption in the above pseudocode is that most create-style opera-
tions can be implemented using one kind of repetitive code, most destroy-
style operations can be implemented using a second kind of repetitive
code, and so on. There may be some operations that require hand-
written code. If a code generation tool uses a general-purpose scripting
language, then it should be possible to write a parser for what I call
�code segment� �les. Such a �le contains a collection of named code seg-
ments. The syntax used in such a �le is not important for the discussion
at hand, but Figure 4.5 shows one possible format.

The code_segments_files variable in the con�guration �le speci�es
a list of code segment �les. The genie can parse those �les so that
the cascading if-then-else statement shown earlier can copy-and-paste a
code segment into the generated code for each operation that must be
hand-written.

If a code generation tool does not enable scripts to parse a con�gu-
ration �le to access information such as that shown in Figure 4.4, then
code generation scripts tend to be limited to generating the same type of
repetitive code for every interface and every operation. But when, as is
the case with idlgen, the code generator provides a parser for con�gura-

cascading if-then-else statement) to call one of several procedures. This technique
can result in shorter, easier-to-maintain code. For example, the Tcl syntax is:
generate_${opType}_operation $op. However, I have shown a cascading if-then-else
statement for simplicity of discussion.

4.8. COMPARISON WITH ANNOTATIONS IN JAVA 5 21

Figure 4.5: Example of a code segments �le

START: implementation of Bar::op33()

... // code that implements Bar::op33()

END: implementation of Bar::op33()

START: implementation of Administration::get_server_status()

... // code that implements Administration::get_server_status()

END: implementation of Administration::get_server_status()

START: implementation of Administration::shutdown_server()

... // code that implements Administration::shutdown_server()

END: implementation of Administration::shutdown_server()

tion �les, code-generation scripts can become signi�cantly more �exible.
In my experience, scripts can become capable of generating all the repet-
itive code required for a project, rather than just a small subset of the
code or �starting point� code that a programmer must then modify.

4.8 Comparison with Annotations in Java 5

I have explained how it can be useful for a code generation tool to have
access to two types of information about data-types: (1) information
provided by, say, an AST; and (2) extra information provided in a con-
�guration �le, such as that shown in Figure 4.4 on page 19. Java 5
provides broadly similar functionality, as I now discuss.

A Java compiler converts a ".java" �le into a ".class" �le that
contains bytecode plus type information. The type information in a
".class" �le is conceptually similar to the information available in the
AST of a compiler. Java's re�ection API makes it possible to navigate
the type information stored in ".class" �les. This makes it possible to
use the re�ection API to implement a code-generation tool. You can see
this easily by comparing Figure 4.1 on page 14 with Figure 4.6.

Version 5 of Java added several new features to the language, one of
which is support for annotations. I will brie�y describe the syntax and
use of annotations, and then explain their relevance to code generation.

A commonly-encountered di�culty in adding a new feature to an ex-
isting programming language is that the new feature might require a new
keyword, but introducing a new keyword would break existing programs
that already use its spelling in identi�ers. A (potentially ugly) solution
to this problem is to overload the semantics of an existing keyword so it

22 CHAPTER 4. CODE GENERATION

Figure 4.6: Re�ection-based code generation in Java

Java
compiler

.class
file

Reflection-
based code
generator

.java
file

generated
code

can be used for the new language feature. That was the approach taken
by the designers of Java when adding annotations to the language. Java
has always used the keyword interface to de�ne an interface. Now,
with Java 5, you can use @interface (the "@" symbol in front of the
keyword is not a typo) to de�ne an annotation. As an example, here is
the de�nition of an annotation called @CodeGenType:

@interface CodeGenType {

String type();

}

The above de�nes an annotation, called @CodeGenType, that takes a
String parameter called type.

Once an annotation type has been de�ned, you can instantiate the
annotation at the start of the declaration of, say, an interface, class or
operation. You can see examples of this in Figure 4.7.

Figure 4.7: Example use of Java annotations

@CodeGenType(type = "dynamic") interface Foo

{

@CodeGenType(type = "query") void op1(...);

@CodeGenType(type = "update") void op2(...);

...

@CodeGenType(type = "update") void op20(...);

@CodeGenType(type = "destroy") void destroy();

};

Instantiating an annotation at the start of a declaration associates
the instantiated annotation with the item being declared. The Java
compiler can write details of instantiated annotations into the generated
".class" �le. Then, a code generation tool like that shown previously in
Figure 4.6 can use Java re�ection to access the instantiated annotations
associated with declarations.

4.8. COMPARISON WITH ANNOTATIONS IN JAVA 5 23

Look again at the code-generation con�guration �le in Figure 4.4 on
page 19. In particular, notice that the interface_type table speci�es
that Foo is a "dynamic" interface. That con�guration information is
reproduced by the Java annotation on the Foo interface in Figure 4.7.
Likewise, the type information speci�ed for operations of Foo in the
operation_type table in Figure 4.4 is reproduced by Java annotations in
Figure 4.7. Thus, we see that metadata for code generation can come
from either a con�guration �le or from annotations embedded in an input
�le. Both approaches seem to o�er similar functionality.

Is it a good idea for a programmer to put metadata about a program
in source-code �les (as is the case with Java annotations)? Or should the
programmer put the metadata in a separate �le (such as a con�guration
or XML �le)?

I have written many idlgen genies that parsed con�guration �les to
obtain metadata about IDL interfaces. In those genies, the metadata in-
dicated important characteristics about the type of code that should be
generated. In other words, the metadata speci�ed high-level implemen-
tation details. Implementation details do not belong in the speci�cation
of an interface. Therefore, it was entirely proper for the metadata to be
written somewhere other than in IDL �les.

Just as (metadata about) implementation details do not belong in
the de�nition of a CORBA IDL interface, I feel that such metadata do
not belong in an Java interface either. However, Java annotations are
often used in a class rather than in an interface. And since a class

does contain implementation details, it seems reasonable for annotations
to appear there.

I do not hold a strong view about whether it is best to store metadata
in source-code �les or in separate con�guration �les. Perhaps the decision
should be made on a case-by-case basis. If so, then it would be useful for
future language designers to equip their languages with: (1) something
akin to Java annotations that can be embedded in source-code �les; and
(2) a standardised way to store metadata in, say, a con�guration �le.
In this way, programmers could mix-and-match the two approaches in
whatever way best suits their needs.

24 CHAPTER 4. CODE GENERATION

Chapter 5

Server Applications

5.1 Introduction

It seems intrinsic to the nature of developing client-server applications
that tedious, repetitive code has to be written�especially in server ap-
plications. For example, server applications are often required to exe-
cute not just �business logic� code, but also �infrastructure logic� code
for every incoming request: to perform security checks, validate input
parameters, log input and output parameters, and so on.

There are many competing technologies for developing client-server
applications. Some of those technologies provide ways to automate com-
monly required, server-side �infrastructure logic�, while other technolo-
gies require programmers to manually write such code.

In this chapter, I explain how Con�g4* can be used to reduce the
burden of writing some types of �infrastructure logic� code.

5.2 Validation Checks for Parameters

Consider a client-server application in which the client presents a form
for the user to �ll in, and then sends details from the �lled-in form to the
server for processing. The server should validate the input data before
it tries to process it. Doing this can involve a lot of tedious, repetitive
code, as you can see in Figure 5.1.

The pseudocode shown for the placeOrder() operation makes two
validation checks on the customerName parameter, in both cases throw-

25

26 CHAPTER 5. SERVER APPLICATIONS

Figure 5.1: Manual validation of parameters can be tedious

void placeOrder(

String customerName,

String[] shippingAddress,

Float cost,

String creditCardNumber

String discountCode) throws ValidationException

{

if (customerName == null) {

throw new ValidationException("You must specify a "

+ "value for customerName");

}

if (customerName.length() > 40) {

throw new ValidationException("The value of "

+ "customerName is too long");

}

... // validation checks for the other parameters

... // business logic code

}

ing a descriptive exception if the check fails. If all the parameters to
placeOrder() require a similar level of validation checking, then the pro-
grammer will have to write and maintain several dozen lines of validation
code for just a single operation. And if the server's public interface has
many operations, then it is easy to imagine the server containing many
hundreds or even several thousands of lines of validation code.

A better approach is to use Con�g4* to de�ne a simple schema lan-
guage for describing the validation checks to be performed on parame-
ters. A hypothetical example of this is shown in Figure 5.2.

The con�guration �le contains a scope for each operation in the public
interface of the server. Within such a scope, there are variables corre-
sponding to each parameter of the operation. The value of a variable
is a list of name=value strings that specify the validation checks to be
performed on the parameter when the operation is invoked. Figure 5.3
shows the outline of a Validator class that can perform the validation
checks described in the con�guration �le shown in Figure 5.2.

The Validator class provides a validate() operation that is over-
loaded for parameters of di�erent types. It might require, say, 500�1000
lines of code to implement this class, but that class needs to be im-
plemented just once and then it can be reused to perform parameter

5.2. VALIDATION CHECKS FOR PARAMETERS 27

Figure 5.2: Con�guration for validation rules

placeOrder {

customerName = ["mandatory=true", "maxLength=40"];

shippingAddress = ["mandatory=true", "minSize=3", "maxSize=5"];

shippingAddress-item = ["mandatory=true", "maxLength=60"];

cost = ["mandatory=true", "min=10"];

discountCode = ["mandatory=false", "maxLength=10"];

creditCardNumber = ["mandatory=true", "fixedSize=16",

"pattern=[0-9]*"];

}

updateOrder {

#--------

Most parameters are similar to those in placeOrder(), so...

#--------

@copyFrom "placeOrder";

... # now add/modify validation rules as required

}

cancelOrder {

...

}

validation for many di�erent operations in a single server. Perhaps the
class could be reused across several related projects. Thus, the e�ort
required to implement the Validator class can be repaid easily if use of
the class signi�cantly reduces the amount of parameter-validation code
required in server operations. Figure 5.4 shows the intended use of the
Validator class.

During initialisation, the server parses a con�guration �le contain-
ing the parameter-validation rules (like those shown in Figure 5.2). As
the pseudocode in Figure 5.4 shows, this con�guration �le could be em-
bedded in the application via use of the config2cpp or config2j utility.
Then, the body of each operation in the server can validate all its param-
eters in a concise way: it creates a Validator object and calls validate()
once for each parameter. In this way, the amount of validation code re-
quired in an operation with N parameters can be reduced from, say, 8N
lines of code (as illustrated by the validation checks for customerName

in Figure 5.1 on page 26) to just N + 1 lines of code (as illustrated in
Figure 5.4).

If the public API of the server is de�ned in, say, CORBA IDL, and

28 CHAPTER 5. SERVER APPLICATIONS

Figure 5.3: A Validator class

public class Validator {

private Configuration cfg;

private String opName;

public Validator(Configuration cfg, String opName)

{

this.cfg = cfg;

this.opName = opName;

}

public void validate(String value, String paramName)

throws ValidationException

{

String[] constraints = cfg.lookupList(opName, paramName);

//--------

// Iterate over "constraints" and throw an exception if

// "value" violates any of them.

//--------

...

}

public void validate(String[] value, String paramName)

throws ValidationException

{ ... }

public void validate(Float value, String paramName)

throws ValidationException

{ ... }

}

you have access to a code generation tool, for example, idlgen, then it
is possible to reduce the amount of hand-written validation code even
further. You can do this by writing a genie that generates a Util class
containing utility methods that encapsulate the N +1 lines of validation
code for each public operation of the server. By doing this, the code
of placeOrder() can be reduced to that shown in Figure 5.5: parameter
validation is achieved by delegating to the (generated) utility operation
Util.validatePlaceOrder().

To brie�y summarise, in this section I have shown a two-step ap-
proach to signi�cantly reduce the amount of parameter validation code

5.2. VALIDATION CHECKS FOR PARAMETERS 29

Figure 5.4: Example use of the Validator class

//--------

// The following code is executed during server initialisation.

//--------

validationCfg = Configuration.create();

validationCfg.parse(Configuration.INPUT_STRING,

embeddedValidationConfig.getString());

//--------

// This is an example of how to perform parameter-validation

// in an operation.

//--------

void placeOrder(

String customerName,

String[] shippingAddress,

Float cost,

String creditCardNumber

String discountCode) throws ValidationException

{

Validator v = new Validator(validationCfg, "placeOrder");

v.validate(customerName, "customerName");

v.validate(shippingAddress, "shippingAddress");

v.validate(cost, "cost");

v.validate(creditCardNumber, "creditCardNumber");

v.validate(discountCode, "discountCode");

... // business logic code

}

Figure 5.5: Encapsulating calls to validate() in utility functions

void placeOrder(

String customerName,

String[] shippingAddress,

Float cost,

String creditCardNumber

String discountCode) throws ValidationException

{

Util.validatePlaceOrder(customerName, shippingAddress, cost,

creditCardNumber, discountCode);

... // business logic code

}

30 CHAPTER 5. SERVER APPLICATIONS

that needs to be embedded in server-side operations.

The �rst step is to write a Validator class (Figure 5.3 on page 28)
that can perform parameter validation checks based on information in
a con�guration �le (Figure 5.2). By doing this, the amount of valida-
tion code required in an operation with N parameters can be reduced
from, say, 8N lines of code (as illustrated by the validation checks for
customerName in Figure 5.1 on page 26) to just N + 1 lines of code (as
illustrated in Figure 5.4).

The second step is to write a genie that generates a Util class con-
taining utility methods that encapsulate the N + 1 lines of validation
code for each public operation of the server. By doing this, the param-
eter validation code embedded in each public operation can be reduced
to a single line of code that delegates to a generated utility operation
(Figure 5.5).

Ideally, those two steps would not need to be performed by an appli-
cation developer. Instead, the Validator class and the genie would be
provided by a vendor who sells tools for building client-server applica-
tions. If this were done, then an application developer might not even
need to explicitly invoke Util.validate<OperationName>() from the body
of a public operation. Instead, that invocation could be made from the
dispatch logic generated by the vendor's tools for building client-server
applications.

5.3 Dispatch Rules

Consider the following scenario. You are in charge of a team that is
developing a client-server application. You decide to split your team
into two sub-teams: one to develop the client application, and the other
to develop the server application. In this way, you hope to get some
development work done in parallel. However, it turns out that there
is a lot more work required to develop the server application than to
develop the client application. The client development team reach their
�rst milestone fairly quickly; then they start to complain that they need
a server to test their client against, but the server team have not yet
�nished their work. Can anything be done to help the client development
team make progress?

The obvious solution is for the client development team to implement
a test version of the server so they can test their client against it. Even
if this test server o�ers simplistic functionality, it will at least permit

5.3. DISPATCH RULES 31

the client development team to test basic connectivity. A drawback of
this approach is that the test server will have a short lifespan�it will
be discarded when the real server application is mature enough to test
against�so any work put into writing the test server will appear to be
wasted e�ort. In this section, I describe an alternative approach; one in
which Con�g4* plays a small but important role.

Let's assume the server application exposes an interface called Foo

that de�nes 10 operations. The server team intend to write a class,
called FooImpl, that implements that interfaces. The implementation of
the operations in that class will contain the �business logic� code required
in the server.

My suggestion is that, along with implementing the FooImpl class,
the server should contain two other classes, as I now discuss.

The FooTest class implements the operations of the Foo interface, but
with �test logic� rather than with �business logic�. The test logic in an
operation might be as simple as printing a message to say the operation
was called and then return a dummy result. Or perhaps the test logic
might be more complex. The choice is up to the client development
team, since they will be writing this class and using it to test their client
application.

The other class, FooDispatch, also implements the operations of the
Foo interface. Each incoming request is executed by the FooDispatch

class, and that class uses a simulation_rules con�guration variable like
that shown in Figure 5.6 to decide if it should delegate the request to
the corresponding operation on the FooImpl or FooTest class.

Figure 5.6: Simulation rules

simulation_rules = [

wildcarded operation name simulate?

#--------------------------------------

"Foo.op1", "true",

"Foo.op3", "true",

"*", "false",

];

The simulation_rules table maps a wildcarded string of the form
interface.operation to a boolean value. Code to implement that mapping
is provided by the shouldSimulate() operation of the FooDispatch class,
which is shown in Figure 5.7.

The constructor of the FooDispatch class creates instances of both

32 CHAPTER 5. SERVER APPLICATIONS

Figure 5.7: Pseudo-code of the FooDispatch class

class FooDispatch implements Foo {

private FooImpl businessObj;

private FooTest testObj;

private boolean simulateOp1;

private boolean simulateOp2;

...

private boolean simulateOp10;

public FooDispatch(String[] simulationRules)

{

businessObj = new FooImpl();

testObj = new FooTest();

simulateOp1 = shouldSimulate(simulationRules, "Foo.op1");

simulateOp2 = shouldSimulate(simulationRules, "Foo.op2");

...

simulateOp10 = shouldSimulate(simulationRules, "Foo.op10");

}

private boolean shouldSimulate(String[] rules, String opName)

{

for (int i = 0; i < rules.length; i += 2) {

String pattern = rules[i + 0];

String boolStr = rules[i + 1];

if (Configuration.patternMatch(opName, pattern)) {

return boolStr.equals("true");

}

}

return false;

}

public long op1(...)

{

Foo targetObj = businessObj;

if (simulateOp1) {

targetObj = testObj;

}

return targetObj.op1(...);

}

... // likewise for the other operations

};

5.3. DISPATCH RULES 33

FooImpl and FooTest, and stores those as instance variables. The con-
structor then calls shouldSimulate() to decide whether each operation
should delegate to the corresponding operation on the FooImpl or FooTest
object. For e�ciency, these decisions are cached in boolean instance vari-
ables, rather than being recalculated for each invocation. The implemen-
tation of an operation uses a simple if-then-else statement to delegate
the request to the �test� or �business� object.

Some readers may assume the approach outlined above is burdensome
because it requires programmers to write three classes�FooImpl, FooTest
and FooDispatch�for the server instead of just one (FooImpl). Doesn't
doing this triple the e�ort required to write the server? Actually, no.
The server development team have to write FooImpl, so that does not
count as an extra burden. Likewise, if the client development team want
a �test server� to test their client against while waiting for the �real�
server to be mature enough to test against, then they would have to
implement (something similar to) FooTest. As such, the need to write
FooTest does not count as an extra burden either. The only extra burden
is in writing FooDispatch, and that class is trivial enough to not be much
of a burden.1

Using the above approach, project development can proceed as fol-
lows.

� The server development team start by writing the server mainline,
FooDispatch and stubbed versions of both FooTest and FooImpl.
These stubbed versions will do something very basic, such as print-
ing a "This operation was called" diagnostic message. The im-
portant thing is to get this skeletal version of the server imple-
mented as quickly as possible.

� The client development team start writing their application. When
they �rst need to test against the work-in-progress server, they
edit the simulation_rules table in a con�guration �le so that all
operations delegate to the test logic. In testing, they will be able
to see the "This operation was called" diagnostic messages.

� If the client development team need more complex test logic in the
server, then they modify the FooTest class however they wish; then
recompile and retest. With the client team modifying FooTest and

1If you are building your client-server application using the Orbix implementation
of CORBA, then you could write an idlgen genie to generate FooDispatch and an
initial implementation of FooTest.

34 CHAPTER 5. SERVER APPLICATIONS

the server team modifying FooImpl, there should be few, if any,
con�icts, because the two teams are modifying di�erent source-
code �les. Hence, development of the client and its �test� server
can proceed in parallel with development of the �real� server.

� Whenever the server team �nishes implementing an operation, they
can inform the client team. The client team can then modify the
simulation_rules table in their con�guration �le so they can now
test against the �business logic� implementation of that operation.
If they discover a bug in that operation, they can inform the server
team and modify the simulation_rules table to revert back to
using the �test logic� version of that operation until the bug is
�xed.

� When all the operations in the server have been implemented, the
simulation_rules table can be modi�ed so that all operations del-
egate to the business logic implementations.

� Before you put the server into production, you might decide to
modify the shouldSimulate() operation in the FooDispatch class
(see Figure 5.7) so that it is hard-coded to return false. In this way,
you can guard against the possibility of miscon�guration resulting
in the �test logic� implementations of operations being used in a
production environment.

Alternatively, if you are not concerned about the possibility of such
miscon�guration, then you could deploy the server with the ability
to execute either �business logic� or �test logic� implementations of
operations. Obviously, the �business logic� implementations would
be used in day-to-day operations, but being able to temporarily
revert to using �test logic� implementations might be a useful trou-
bleshooting aid for whenever something goes wrong.

There are many competing technologies available for building client-
server applications. It is common for these technologies to provide a
class that delegates an incoming request to the target object. Such
classes always provide some �added value� when performing the delega-
tion. For example, the class might unmarshal an incoming request before
dispatching (that is, delegating) it. Or the class might perform auditing,
security checks, or manage transaction boundaries when dispatching an
incoming request. The �should I dispatch this request to the `business
logic' or `test logic' implementation of an operation?� functionality could

5.4. SUMMARY 35

be designed into the dispatch classes of future technologies for building
client-server applications. If that ever happens, then it will remove the
(albeit small) burden from application developers of writing code such
as the FooDispatch class shown in Figure 5.7.

5.4 Summary

It is common for server applications to contain not just �business logic�
but also �infrastructure� code. Some technologies for building client-
server applications can reduce the burden of implementing some types
of infrastructure task. For example, a client-server technology might
automate security checks or transaction boundaries.

In this chapter, I have discussed two other types of infrastructure
tasks that are unlikely to be automated by current client-server tech-
nologies: the validation of input parameters, and deciding whether an
incoming request should be dispatched to the real �business logic� imple-
mentation of an operation or to a �test� implementation. I have explained
how Con�g4* can simplify the implementation of both those tasks.

36 CHAPTER 5. SERVER APPLICATIONS

Chapter 6

Test Suites

6.1 Introduction

If you are writing software to automate the running of a test suite, then,
as I discuss in this chapter, you may �nd some Con�g4* features useful.

6.2 Regression Test Suite

Over time, a software project is likely to acquire an ever-growing collec-
tion of tests to check that speci�c pieces of functionality work correctly.
It can be useful for a project team to rerun its entire test suite each night,
to check if newly added or modi�ed code has broken existing code. In
addition, when a developer modi�es code in a particular subsystem of
the project, it can be useful for him to be able to immediately run the
subset of tests that are related to the modi�ed subsystem, rather than
wait for the nightly run of the entire test suite.

There are some programming language-speci�c framework libraries
that simplify the task of writing and running tests,1 but many projects
develop their own bespoke testing frameworks.

A feature common to many testing frameworks, whether bespoke or
not, is that each test has a unique name, and the testing framework
knows the names of all the tests. For example:

� If each test is implemented by a separate function, then the name
of the function acts as the name of the test, and the test frame-

1http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

37

38 CHAPTER 6. TEST SUITES

work contains a map that is (somehow) populated with name-of-
test→ pointer-to-function entries.

� If each test is implemented as a collection of �les in a subdirectory,
then the name of a subdirectory acts as the name of the test it
contains, and the testing framework can obtain a list of the names
of those subdirectories.

Several years ago, when I wrote a bespoke testing framework, I
found it useful for the testing framework to obtain two list variables,
include_tests and exclude_tests, from a con�guration �le. The test-
ing framework iterated over the entire list of test names, and it exe-
cuted a test only if: (1) its name matched a wildcarded pattern in the
include_tests list; and (2) its name did not match any wildcarded pat-
terns in the exclude_tests list. Pseudocode to check those conditions is
provided in Figure 6.1.

Figure 6.1: Pseudocode of shouldExecuteTest()

boolean shouldExecuteTest(

String[] includeTests,

String[] excludeTests,

String testName)

{

for (int i = 0; i < excludeTests.length; i++) {

String pattern = excludeTests[i];

if (Configuration.patternMatch(testName, pattern)) {

return false;

}

}

for (int i = 0; i < includeTests.length; i++) {

String pattern = includeTests[i];

if (Configuration.patternMatch(testName, pattern)) {

return true;

}

}

return false;

}

I found this approach to be simple and e�ective. For example, you
can execute all tests with the following con�guration:

include_tests = ["*"];

exclude_tests = [];

6.3. PERFORMANCE TEST SUITE 39

Perhaps you use the name of a software component as a pre�x on the
names of tests related to that component. If so, then you can execute all
tests except those related to the foo and bar components by using the
following con�guration:

include_tests = ["*"];

exclude_tests = ["foo_*", "bar_*"];

Doing that might be useful if you know that the foo and bar components
currently are unstable, but you want to test the project's remaining
components.

As a �nal example, you can execute the tests for just the foo and bar
components by using the following con�guration:

include_tests = ["foo_*", "bar_*"];

exclude_tests = [];

6.3 Performance Test Suite

Figure 6.2 shows a (pseudocode) API of a server application that pro-
cesses invoices. A client application (somehow) obtains details of in-
voices and then invokes submitInvoices() to send them, in batches, to
the server.

Let's assume you are part of a project team that has been asked to
implement that client-server system. Before committing to the project,
your manager decides to carry out performance tests of various products
that will be used in the project: the database product, the middleware
product, and so on.2 His goal is to determine if the performance targets
for the project are feasible. In particular, he wants to determine this
feasibility before he commits signi�cant resources to implementing the
project. Your manager has asked one member of his team to write a per-
formance test for the database, and he has asked another member, you,
to write a performance test for the middleware product. In particular,
he wants you to �nd the answer to the following question: �How many
invoices per second is the middleware product capable of transmitting
from the client to the server?�

You will probably �nd it trivial to implement a server for your perfor-
mance test. In particular, the implementation of the submitInvoices()

operation does nothing because you are testing the performance of just

2Middleware is software that simpli�es the building of client-server applications.
CORBA, JMS and Web Services are examples of (competing) middleware standards.

40 CHAPTER 6. TEST SUITES

Figure 6.2: API of an invoice processing server

struct InvoiceItem {

long productCode;

float quantity;

float price;

String description;

};

struct Invoice {

String customerName;

String[] billingAddress;

String[] shippingAddress;

String creditCardNumber;

InvoiceItem[] items;

float totalPrice;

};

interface InvoiceProcessor {

void submitInvoices(Invoice[] invoices);

... // other operations

};

the middleware product. However, writing the client for your perfor-
mance test turns out to be a bit more interesting, as I now discuss.

A pseudocode outline of your client is shown in Figure 6.3. The client
connects to the server. Then it initializes an array of invoices. Having
done that, it starts a timer, invokes submitInvoices() one million times,
stops the timer, and reports the average throughput, that is, the number
of invoices sent to the server per second.

Figure 6.3: Pseudocode of a performance test

invoiceProcessorObj = ...; // connect to the server

Invoice[] invoices = ...;

numIterations = 1000 * 1000;

startTime = getCurrentTime();

for (int i = 0; i < numIterations; i++) {

invoiceProcessorObj.submitInvoices(invoices);

}

endTime = getCurrentTime();

elapsedTime = endTime - startTime;

throughput = invoices.length * numIterations / elapsedTime;

print("Throughout is " + throughput + " invoices per second");

6.3. PERFORMANCE TEST SUITE 41

Common sense dictates that the throughput will depend on the size of
each invoice, which, obviously, can vary. Perhaps you also suspect that
the throughput will depend on the batch size, that is, the number of
invoices sent in each call to submitInvoices().3 These issues mean that
you will need to run the performance test multiple times, for di�erent
sizes of invoices and di�erent batch sizes. And to be able to do that, you
do not want to hard-code information about invoice size or batch size into
the test client. Instead, you want that information to be con�gurable,
which is where Con�g4* comes in useful.

If you are familiar with XML, then you may know that XPath is a
syntax used to specify nodes in an XML document. We can borrow that
concept, and apply it (albeit with a di�erent syntax) to specify individ-
ual �elds within a complex parameter that is passed to an operation.
Consider the following examples:

InvoiceProcessor.submitInvoices.invoices

InvoiceProcessor.submitInvoices.invoices[2].customerName

InvoiceProcessor.submitInvoices.invoices[2].billingAddress[0]

The �rst line above speci�es the invoices array parameter passed to
the submitInvoices() operation in the InvoiceProcessor interface. The
second line speci�es the customerName �eld of the invoices array indexed
by 2. And the third line speci�es the �rst line of that invoice's billing
address.

With that syntax in mind, now have a look at the parameter_rules

con�guration variable in the test_10 scope of Figure 6.4.
The parameter_rules variable is arranged as a two-column table. The

�rst column uses "*" as a wildcard character to reduce the verbosity of
the syntax discussed above. The �rst line in the table speci�es that the
length of the invoices array is 10. The second line speci�es that the
value of all customerName �elds is "John Smith". In general, the table
is used to specify the length of arrays, and either the value or length of
strings.

The parameter_rules table provides an intuitive and �exible way to
con�gure the size of parameters to an operation when running a per-
formance test. The test_20 and test_30 scopes uses the concatenation
operator ("+") to reuse the value of test_10.parameter_rules but pre�x
it with a di�erent length of the invoices array. If code that processes
parameter_rules uses the �rst matching pattern found, then this pre�x-

3CPU speed, network latency and network bandwidth are also likely to a�ect
throughput, but I ignore those issues in the following discussion.

42 CHAPTER 6. TEST SUITES

Figure 6.4: Parameter rules for a performance test

test_10 {

parameter_rules = [

wildcarded attribute name attribute’s value

#---

"*.invoices.length()", "10",

"*.invoices[*].customerName.value()", "John Smith",

"*Address.length()", "5",

"*Address[0].value()", "29 Street name",

"*Address[1].value()", "Name of suburb",

"*Address[2].value()", "Reading",

"*Address[3].value()", "Berkshire RG1 2LD",

"*Address[4].value()", "United Kingdom",

"*.creditCardNumber.length()", "16",

"*.invoices.items.length()", "4",

"*.description.length()", "10",

];

}

test_20 {

parameter_rules = ["*.invoices.length()", "20"]

+ test_10.parameter_rules;

}

test_30 {

parameter_rules = ["*.invoices.length()", "30"]

+ test_10.parameter_rules;

}

ing provides a simple and concise way to run the performance test for
di�erent batch sizes.

The question to now ask is the following: How much e�ort is required
to write code that can use parameter_rules to initialise the invoices

parameter in the performance test?
You can �nd the answer to that question by looking at the pseudocode

shown in Figure 6.5. For conciseness, the pseudocode assumes that the
parameter_rules table has been read from the con�guration �le and is
available in the parameterRules instance variable. The test client shown
in Figure 6.3 on page 40 would initialise the invoices parameter with
the following statement.

invoices = allocateInvoiceArray(

"InvoiceProcessor.submitInvoices.invoices");

6.3. PERFORMANCE TEST SUITE 43

Figure 6.5: Pseudocode to process parameter_rules

int getArrayLength(String name) {

String nameDotLen = name + ".length()";

for (int i = 0; i < parameterRules.length; i += 2) {

String pattern = parameterRules[i + 0];

String attrValue = parameterRules[i + 1];

if (Configuration.patternMatch(nameDotLen, pattern)) {

return integer.parseInt(attrValue);

}

}

return 0; // default value

}

String allocateString(String name) {

String nameDotLen = name + ".length()";

String nameDotVal = name + ".value()";

for (int i = 0; i < parameterRules.length; i += 2) {

String pattern = parameterRules[i + 0];

String attrValue = parameterRules[i + 1];

if (Configuration.patternMatch(nameDotVal, pattern)) {

return attrValue;

} else if (Configuration.patternMatch(nameDotLen, pattern)) {

int length = Integer.parseInt(attrValue);

StringBuffer result = new StringBuffer();

for (int j = 0; j < length; j++) {

result.append("x");

}

return result.toString();

}

}

return ""; // default value

}

String[] allocateStringArray(String name) {

int length = getArrayLength(name);

String[] result = new String[length];

for (int i = 0; i < length; i++) {

result[i] = allocateString(name + "[" + i + "]");

}

return result;

}

... continued on the next page

44 CHAPTER 6. TEST SUITES

Figure 6.5 (continued): Pseudocode to process parameter_rules

... continued from the previous page

InvoiceItem allocateInvoiceItem(String name) {

InvoiceItem result = new InvoiceItem();

result.productCode = 0;

result.quantity = 0;

result.price = 0;

result.description = allocateString(name + ".description");

}

InvoiceItem[] allocateInvoiceItemArray(String name) {

int length = getArrayLength(name);

InvoiceItem[] result = new InvoiceItem[length];

for (int i = 0; i < length; i++) {

result[i] = allocateInvoiceItem(name + "[" + i + "]");

}

return result;

}

Invoice allocateInvoice(String name) {

Invoice result = new Invoice();

result.customerName = allocateString(name + ".customerName");

result.billingAddress = allocateStringArray(

name + ".billingAddress");

result.shippingAddress = allocateStringArray(

name + ".shippingAddress");

result.creditCardNumber = allocateString(

name + ".creditCardNumber");

result.items = allocateInvoiceItemArray(name + ".items");

result.totalPrice = 0;

}

Invoice[] allocateInvoiceArray(String name) {

int length = getArrayLength(name);

Invoice[] result = new Invoice[length];

for (int i = 0; i < length; i++) {

result[i] = allocateInvoice(name + "[" + i + "]");

}

return result;

}

6.4. SUMMARY 45

Some readers may be discouraged by the verbose and repetitive na-
ture of the pseudocode in Figure 6.5. Once you understand how the
pseudocode works, then it becomes obvious that the verbosity will be
proportional to the quantity and complexity of data-types used as pa-
rameters. However, it might be possible to use one of two techniques to
eliminate the need to write such verbose, repetitive code.

First, perhaps the public API of the server is de�ned using a speci�-
cation language (similar in spirit to CORBA IDL), and perhaps there is
a code generation tool (similar in spirit to idlgen) for that speci�cation
language. If that is the case, then it should be straightforward to write
a code generation tool to generate all the verbose, repetitive code.

Second, perhaps the programming language you are using to write
the test client provides re�ection capabilities. If so, then you could write
a utility class that uses re�ection to navigate over the strings, arrays, and
nested structures contained within the parameter, and initialise each one.

Once you have found a viable technique for initialising parameters
without having to manually write lots of repetitive code, you will discover
that a simple performance test client like that shown in Figure 6.3 on
page 40 can be very �exible.

6.4 Summary

In this chapter, I have discussed two ways in which Con�g4* can be
useful for implementing test suites.

First, in a regression test suite, a con�guration �le might contain
include_tests and exclude_tests variables that specify a list of wild-
carded test names. This provides a simple yet e�ective way to specify
an arbitrary subset of tests that should be run.

Second, writing a performance test suite is conceptually simple, but
often time consuming due to the need to write repetitive code to initialise
parameter values. Some people hard-code parameter values into a test
program, but this results in an in�exible performance test. A more �ex-
ible approach is to use a con�guration �le to store wildcarded metadata
about the sizes and values of parameters. Unfortunately, handwritten
code to retrieve such metadata and use it to initialise parameters can be
verbose and error-prone. However, if you have access to a code gener-
ation tool, then you could use it to generate such code. Alternatively,
if your performance test suite is written in a language that provides a
re�ection API, then you could use this to write a utility function that

46 CHAPTER 6. TEST SUITES

can initialise an arbitrary type of parameter from metadata in a con�g-
uration �le.

Part II

Con�guration-driven

Object Creation

47

Introduction to Part II

Consider the con�guration �le below:

object_1 {

type = "Person";

name = "John Smith";

age = "42";

}

object_2 {

type = "Car";

model = "Porsche 996 GT3";

registration_number = "R13 MEW";

}

It is possible to imagine an application that parses the above con�gura-
tion �le and iterates over all the object_<int> scopes. For each scope,
the application creates an object of the type speci�ed by the type vari-
able within the scope, and sets instance variables of the newly created
object to the values speci�ed by variables within the scope.

Some readers may question the value of an application written in such
a way. After all, it is probably syntactically shorter to just hard-code
the creation of objects into the application:

obj1 = new Person();

obj1.setName("John Smith");

obj1.setAge(42);

obj2 = new Car();

obj2.setModel("Porsche 996 GT3");

obj2.setRegistrationNumber("R13 MEW");

The code can be even more concise if the values for instance variables
are passed as parameters to constructors:

49

50

obj1 = new Person("John Smith", 42);

obj2 = new Car("Porsche 996 GT3", "R13 MEW");

Despite the relative verbosity of using a con�guration �le to specify the
creation and initialisation of objects, this technique can o�er impor-
tant bene�ts for some niche programming tasks. Part II of this manual
explores issues associated with using this technique in Con�g4*-based
applications.

Chapter 7

Limitations of the "uid-"

Pre�x

7.1 Introduction

Let's assume we want to write an application that creates objects based
on information provided in scopes in a con�guration �le:

object_1 {

type = "Person"; # The type of object to create

... # Other name=value pairs specify values for instance variables

}

object_2 {

type = "Car"; # The type of object to create

... # Other name=value pairs specify values for instance variables

}

When editing the con�guration �le to add more object_<int> scopes, it
will be tedious to keep track of which numbers have already been used.
To avoid this problem, we might decide to use the "uid-" pre�x instead.

uid-object {

type = "Person";

...

}

uid-object {

type = "Car";

...

}

51

52 CHAPTER 7. LIMITATIONS OF THE "UID-" PREFIX

At �rst sight, this appears to be an improvement. However, the "uid-"

pre�x has some some subtle limitations that can a�ect the ergonomics of
a con�guration �le. This chapter explores those limitations, and suggests
an alternative approach that, sometimes, can work better.

To make the issues discussed in this chapter more concrete, I base the
discussion around the design of a hypothetical application for monitoring
security devices�such as burglar alarms and security cameras�that can
be connected to a computer network.

Each scope in a con�guration �le speci�es details for a security device:
(1) its network address as a string of the form ip-address:port ; and (2) a
brief description of its physical location, for example, �front entrance�
or �loading bay�. When the application examines a con�guration scope,
it creates a �device driver� object based on information in the scope,
and adds that object to a collection. To monitor the status of security
devices, the application simply iterates over the collection and invokes
an operation on each object that queries the status of the corresponding
security device.

In this chapter, I discuss two di�erent approaches that can be taken
with Con�g4* to store details of each security device. The �rst ap-
proach illustrates limitations of the use of the "uid-" pre�x. The second
approach avoids using the "uid-" pre�x and, in doing so, avoids its lim-
itations.

7.2 Approach 1: With "uid-" Entries

Figure 7.1 shows how a con�guration �le might use the "uid-" pre�x to
store details of di�erent types of security devices.

The format of the con�guration �le in Figure 7.1 is straightforward:
there is an uid-camera scope for each camera on the network and, like-
wise, an uid-burglar-alarm scope for each burglar alarm on the network.

Let's assume that the security monitor application wants to display a
warning message about a malfunctioning camera. Several options come
to mind for the format of such a message.

The �rst option is for the message to identify the camera by report-
ing the expanded form of its uid-camera name, for example, "Camera

‘uid-000000042-camera’ is malfunctioning". However, such a message
is not user-friendly: a user would have to laboriously search through the
con�guration �le for the 43nd occurrence of the "uid-" pre�x to identify

7.2. APPROACH 1: WITH "UID-" ENTRIES 53

Figure 7.1: Security con�guration with "uid-" entries

uid-camera {

network_address = "192.128.42.006:5000";

location = "front entrance";

};

uid-camera {

network_address = "192.128.42.009:5000";

location = "loading bay";

};

uid-burglar-alarm {

network_address = "192.128.42.021:5000";

location = "loading bay";

}

the relevant camera.1

A second option is for the message to identify the camera by report-
ing one of its attributes, such as its location: "The camera at location

‘front entrance’ is malfunctioning". Such a message seems to be
user-friendly, but it unambiguously identi�es the relevant camera only
if the location attribute has a unique value. This may not be the case
if there are several cameras placed in the same location (perhaps for
redundancy purposes, or perhaps to provide di�erent views of the same
location). If there are no existing attributes that are guaranteed to be
unique, then you could introduce one, such as id shown in Figure 7.2.2

The need to introduce the id attribute in Figure 7.2 is ironic be-
cause the whole point of the "uid-" pre�x is to avoid users having to
invent unique identi�ers. By introducing the id attribute, we reintro-
duce problems that the "uid-" pre�x was intended to avoid. In par-
ticular, users must ensure that each id has a unique value. This may
not be a signi�cant problem if there are just a handful of scopes in
a con�guration �le, but it can become a problem if a con�guration
�le contains hundreds or thousands of scopes. This problem can be
eased somewhat if the value of id can be an arbitrary string rather
than, say, just an integer. In this case, a user might set a device's
id to be its location su�xed by a number. For example, three de-
vices at the front entrance might have id values: "front entrance: 1",

1The counter for uid entries starts at 0, so 42 is the 43rd occurrence of a uid entry.
2Actually, the network_address attribute is likely to be unique, but I will ignore

that for the moment because I want to focus on what can be done if there are not

any unique attributes.

54 CHAPTER 7. LIMITATIONS OF THE "UID-" PREFIX

Figure 7.2: Security con�guration with id attributes

uid-camera {

id = "1";

network_address = "192.128.42.006:5000";

location = "front entrance";

};

uid-camera {

id = "2";

network_address = "192.128.42.009:5000";

location = "loading bay";

};

uid-burglar-alarm {

id = "3";

network_address = "192.128.42.021:5050";

location = "loading bay";

}

"front entrance: 2" and "front entrance: 3", while two devices at
the loading bay might have id values: "loading bay: 1" and "loading

bay: 2". Such a convention can help reduce the di�culty of ensur-
ing unique id values for each of hundreds of devices (assuming there
are only a handful of devices at each location). If this approach is
taken, then the application can produce messages of the form, "Camera
‘front entrance: 2’ is malfunctioning". This is more user-friendly
than "Camera ‘uid-000000042-camera’ is malfunctioning".

The schema de�nition for the con�guration �le shown in Figure 7.2
is straightforward, and is shown in Figure 7.3.

Figure 7.3: Schema for the con�guration �le shown in Figure 7.2

String[] schema = new string[] {

"uid-camera = scope",

"uid-camera.id = string",

"uid-camera.network_address = string",

"uid-camera.location = string",

"uid-burglar-alarm = scope",

"uid-burglar-alarm.id = string",

"uid-burglar-alarm.network_address = string",

"uid-burglar-alarm.location = string"

};

7.3. APPROACH 2: WITHOUT "UID-" ENTRIES 55

It is important to note that the Con�g4* schema language does not
provide any way to ensure that each id variable has a unique value.
Because of this, a developer implementing the security-monitoring ap-
plication would need to write code that checks for clashes in the values
of the uid-camera.id variables. You can implement this code as follows.
First, you create an empty hash table that will provide an id → scope

mapping. Then, you populate this hash table by iterating over all the
uid-camera scopes to obtain the value of the id variable within each
scope. Before adding each id and scope to the hash table, you check if
the hash table already contains an entry with the same id value. If it
does, then you report the clash as an error.

7.3 Approach 2: Without "uid-" Entries

As I explained in Section 7.2, using the "uid-" pre�x in the con�guration
�le for the security-monitoring application was not as bene�cial as we
might have hoped: we still had to introduce an arti�cial id variable inside
each scope. Since the "uid-" pre�x is not providing as much bene�t as
we would like, we might decide to avoid its use altogether, as shown in
Figure 7.4.

Figure 7.4: Security con�guration without id attributes

camera {

1 {

network_address = "192.128.42.006:5000";

location = "front entrance";

}

2 {

network_address = "192.128.42.009:5000";

location = "loading bay";

}

}

burglar-alarm {

1 {

network_address = "192.128.42.021:5050";

location = "loading bay";

}

}

This con�guration �le foregoes both the "uid-" pre�x and the id

56 CHAPTER 7. LIMITATIONS OF THE "UID-" PREFIX

variable. Instead, the con�guration �le uses a unique scope name for
each camera or burglar alarm. The user has the responsibility of en-
suring that there is no clash of these scope names, but this is hardly
more of a burden than ensuring there was no clash of the values of id

variables. Figure 7.5 shows how this con�guration �le can be written in
an semantically identical but more compact and intuitive syntax.

Figure 7.5: More concise security con�guration without id attributes

camera.1 {

network_address = "192.128.42.006:5000";

location = "front entrance";

};

camera.2 {

network_address = "192.128.42.009:5000";

location = "loading bay";

};

burglar-alarm.1 {

network_address = "192.128.42.021:5050";

location = "loading bay";

}

A security-monitoring application that uses this type of con�guration
�le can report a problem with, for example, "The ‘camera.2’ device is

malfunctioning", which seems clear enough. Thus, in terms of usability,
this approach is arguably better than the �rst approach (discussed in
Figure 7.2).

Of course, the scope names for individual devices do not have to be
integers, so a user is free to use more meaningful names:

camera.front-entrance-1 {

...

};

camera.loading-bay-1 {

...

};

burglar-alarm.loading-bay-1 {

...

}

The main drawback of this approach is that the Con�g4* schema
language is not �exible enough, by itself, to validate the contents of such
a con�guration �le. Instead, a developer must perform schema validation

7.4. WHEN TO USE THE "UID-" PREFIX 57

in a piecemeal manner, as I now discuss.
First, the developer uses the schema shown in Figure 7.6 to validate

the top-levels of the con�guration �le. Notice that this schema ignores
the scopes nested within the camera and burglar-alarm scopes.

Figure 7.6: A top-level schema for the con�guration in Figure 7.5

String[] schema = new string[] {

"camera = scope",

"@ignoreScopesIn camera",

"burglar-alarm = scope",

"@ignoreScopesIn burglar-alarm"

};

Second, to validate the details of each camera, the developer calls
listFullyScopedNames() to obtain the names of the scopes nested within
camera.

String[] names = cfg.listFullyScopedNames("", "camera",

Configuration.CFG_SCOPE, false);

The developer can then validate each of those scopes with the schema
shown in Figure 7.7.

Figure 7.7: A schema for a camera scope in Figure 7.5

String[] schema = new string[] {

"network_address = "string",

"location = "string"

};

The developer can validate burglar alarms scopes in a similar manner,
that is, by calling listFullyScopedNames() to obtain a list of the scopes
nested within burglar-alarm, and then validating each of those nested
scopes.

7.4 When to use the "uid-" Pre�x

In Section 7.2, I explained why you might not want to use the "uid-"

pre�x. This raises the question: is the "uid-" pre�x ever useful? In
particular, under what circumstances can the "uid-" pre�x achieve its

58 CHAPTER 7. LIMITATIONS OF THE "UID-" PREFIX

intended goal of eliminating the burden for users to create identi�ers
with unique values? Unfortunately, I cannot give a de�nitive answer to
that question. This is because the "uid-" pre�x was introduced rela-
tively late in the development cycle of Con�g4*, so I have not had the
opportunity to use it su�ciently often to feel con�dent that I know all its
strengths and weaknesses. However, the recipes con�guration �le shown
in Figure 7.8 provides two examples of when the "uid-" pre�x can be
used without problems.

1. The "uid-" pre�x can be used on the name of a scope if that scope
naturally contains a variable whose value: (a) is guaranteed to
be unique across all similar scopes; and (b) is suitable for use in
human-readable messages. For example, it is reasonable to require
each uid-recipe scope to contain a name variable whose value is
unique and meaningful to humans. An application can unambigu-
ously report a problem about a speci�c uid-recipe by referring to
the value of its name variable.

2. The "uid-" pre�x can be used on the name of an item (that is, a
scope or variable) if the item is, essentially, anonymous. This is
illustrated by the uid-step variables within each uid-recipe scope.

In the security-monitoring application, the uid-burglar-alarm and
uid-camera scopes contain a network_address variable, whose value is
unique. Because of this, the application could unambiguously iden-
tify a device with a message such as, "The camera at network address

192.128.42.006:5000 is malfunctioning".

However, a network address is a low-level piece of information, and
a security-monitoring application might prefer to identify a device with
a more human-friendly description. It is this desire for a meaningful to
humans, unique identi�er that motivates either: (1) the introduction of
the id variable in Figure 7.2; or (2) �nding an alternative to use of the
"uid-" pre�x, as shown in Figure 7.5.

7.5 Summary

In this chapter, I have explored how an application might have a con�gu-
ration �le that contains a separate scope for creating each of an arbitrary
number of objects. The obvious approach is to use the "uid-" pre�x on
the names of scopes. For example:

7.5. SUMMARY 59

Figure 7.8: File of recipes

uid-recipe {

name = "Tea";

ingredients = ["1 tea bag", "cold water", "milk"];

uid-step = "Pour cold water into the kettle";

uid-step = "Turn on the kettle";

uid-step = "Wait for the kettle to boil";

uid-step = "Pour boiled water into a cup";

uid-step = "Add tea bag to cup & leave for 3 minutes";

uid-step = "Remove tea bag";

uid-step = "Add a splash of milk if you want";

}

uid-recipe {

name = "Toast";

ingredients = ["Two slices of bread", "butter"];

uid-step = "Place bread in a toaster and turn on";

uid-step = "Wait for toaster to pop out the bread";

uid-step = "Remove bread from toaster and butter it";

}

uid-camera { ... };

uid-camera { ... };

uid-camera { ... };

Unfortunately, this approach works well only if the scopes naturally con-
tain a variable whose value: (1) is guaranteed to be unique across all
similar scopes; and (2) is suitable for use in human-readable messages.
If this is not the case, then you may �nd yourself introducing an arti�cial
id variable inside each scope:

uid-camera { id = "..."; ... };

uid-camera { id = "..."; ... };

uid-camera { id = "..."; ... };

If you �nd yourself in that situation, then it may be better to forego
the use of the "uid-" pre�x, and instead employ a unique identi�er as a
sub-scope:

camera.id1 { ... };

camera.id2 { ... };

camera.id3 { ... };

60 CHAPTER 7. LIMITATIONS OF THE "UID-" PREFIX

Chapter 8

The Spring Framework

8.1 Introduction

The Spring framework (www.springsource.org) is a popular Java library
for con�guration-driven object creation. In particular, Spring-based ap-
plications can create Java objects of arbitrary types from con�guration
information in an XML �le. In this chapter, I explore how Spring might
be di�erent if it obtained con�guration information from a Con�g4* �le
instead of from an XML �le.

The purpose of this exploration is not to advocate that Spring should
be retro�tted with support for Con�g4*. After all, there is no need to
�x something that is not broken. Rather, the purpose of this chapter is
to show the suitability of Con�g4* for future projects that might need a
Spring-like capability.

8.2 Terminology

Java is an Indonesian island that is famous for its export of co�ee beans.
This has resulted in many Americans using java as a slang term for
co�ee. This, in turn, has resulted in the Java programming language us-
ing co�ee-inspired terminology for programming concepts. Of particular
note, the term bean (as in a co�ee bean) is often used to denote a class
(or object) whose public API adheres to several conventions, including
the following:

� The class has a public default (that is, parameterless) constructor.

61

62 CHAPTER 8. THE SPRING FRAMEWORK

� Rather than making a �eld (that is, an instance variable) called
foo public, the �eld is kept private, but there are public operations
called getFoo() and setFoo() that can be used to read and update
the �eld.

By the way, the combination of a private �eld and its public get and set

operations is called a property.

8.3 Reducing the Verbosity of Spring Beans

Now that I have explained the terms bean and property, you might be
able to understand the extract of a Spring XML �le shown in Figure 8.1.

Figure 8.1: Example of Spring beans

<bean id = "employee1" class = "com.foo.bar.Employee">

<property name = "firstName" value = "John"/>

<property name = "lastName" value = "Smith"/>

<property name = "age" value = "24"/>

<property name = "manager" ref = "owner"/>

</bean>

<bean id = "owner" class = "com.foo.bar.Employee">

<property name = "firstName" value = "Jane"/>

<property name = "lastName" value = "Doe"/>

<property name = "age" value = "42"/>

</bean>

Each bean element contains con�guration information that can be
used to create and initialise a Java object. The class attribute speci�es
the type of object to be created. Typically, Spring will create the object
by using Java's re�ection capabilities to invoke the default constructor of
the speci�ed class.1 Then Spring processes each of the property elements
nested inside the bean element. For each property, Spring uses re�ection
to invoke a set<Name>() operation on the newly-created bean. When
doing this, Spring uses re�ection to determine the type of the parameter
passed to the set<Name>() operation so it can convert the stringi�ed
value obtained from the XML �le to that appropriate type.

1Spring has the ability to create an object by invoking a non-default constructor
or by invoking a factory method. However, a discussion of those capabilities is outside
the scope of this chapter.

8.3. REDUCING THE VERBOSITY OF SPRING BEANS 63

Each bean has an id attribute that is required to have a unique
value. The manager property in the employee1 bean does not have a value
attribute. Instead, it has a ref attribute, the value of which speci�es the
unique id of another bean. Thus, when Spring is creating the employee1

bean, it (recursively) creates the owner bean too.

We can transform the XML syntax in Figure 8.1 to Con�g4* syntax
in a straightforward manner. Each XML element becomes a correspond-
ingly named scope in the Con�g4* �le. If there can be multiple occur-
rences of the XML element, then the "uid-" pre�x is used on the name
of the corresponding Con�g4* scope. Thus, the bean and property ele-
ments become uid-bean and uid-property scopes. Each XML attribute
becomes a variable in the Con�g4* �le. The result of this transformation
is shown in Figure 8.2.

Figure 8.2: Simple representation of beans in Con�g4* syntax

uid-bean {

id = "employee1"; class = "com.foo.bar.Employee";

uid-property { name = firstName; value = "John"; }

uid-property { name = lastName; value = "Smith"; }

uid-property { name = age; value = "24"; }

uid-property { name = manager; ref = "owner"; }

}

uid-bean {

id = "owner"; class = "com.foo.bar.Employee";

uid-property { name = firstName; value = "Jane"; }

uid-property { name = lastName; value = "Doe"; }

uid-property { name = age; value = "42"; }

}

Unfortunately, this straightforward transformation has resulted in a
Con�g4* �le that is more verbose than the original XML �le. However,
there is room for some improvements as I now discuss.

In Section 7.3 on page 55, I turned an uid-camera scope that con-
tained an id variable with a unique value into a scope with a name of
the form camera.id. The same technique can be applied to Figure 8.2.
In fact, the technique can be applied twice. First, we can replace the
uid-bean scope and its id variable with a scope that has a name of the
form bean.id. Second, we can replace the uid-property scope and its
name variable with a scope that has a name of the form property.name.

64 CHAPTER 8. THE SPRING FRAMEWORK

These changes result in the con�guration �le shown in Figure 8.3.

Figure 8.3: Enhanced representation of beans in Con�g4* syntax

bean.employee1 {

class = "com.foo.bar.Employee";

property.firstName.value = "John";

property.lastName.value = "Smith";

property.age.value = "24";

property.manager.ref = "owner";

}

bean.owner {

class = "com.foo.bar.Employee";

property.firstName.value = "Jane";

property.lastName.value = "Doe";

property.age.value = "42";

}

This revised Con�g4* �le is more concise than the original XML �le.
Of course, the word "property" is written repeatedly in each bean, so
that invites the possibility of writing the beans with an explicitly-opened
property scope to save a few more keystrokes, as shown in Figure 8.4.

In summary, a straightforward translation of XML syntax into Con-
�g4* syntax can result in a more verbose �le. However, with some simple
tweaking, it is possible to produce a Con�g4* �le that is more concise
than its XML counterpart.

8.4 The Bene�ts of @include

Unfortunately, XML does not provide a mechanism for one XML �le to
include the contents of another. Because of this, the designers of Spring
had to implement their own mechanism. The syntax is illustrated below:

<import resource="another-file.xml"/>

If Spring were to be redesigned to use Con�g4* instead of XML, then the
ability to include another �le would be obtained without any developer
e�ort via the @include statement.

8.5. THE BENEFITS OF @COPYFROM 65

Figure 8.4: Enhanced representation of beans in Con�g4* syntax

bean.employee1 {

class = "com.foo.bar.Employee";

property {

firstName.value = "John";

lastName.value = "Smith";

age.value = "24";

manager.ref = "owner";

}

}

bean.owner {

class = "com.foo.bar.Employee";

property {

firstName.value = "Jane";

lastName.value = "Doe";

age.value = "42";

}

}

8.5 The Bene�ts of @copyFrom

Sometimes, a Spring con�guration �le contains several bean element in
which most properties have identical values. In such a case, it can be
useful to reuse some of the details of one bean when de�ning the other
beans. Spring uses the term bean inheritance to refer to this form of
reuse, and an example of it is shown in Figure 8.5.

The widget1 bean de�nes properties t, u, v, w, x and y. The widget2

bean uses the parent attribute to specify that it will inherit (that is,
reuse) some of the details from the widget1 bean. In this case, widget2 in-
herits the class attribute plus most of the properties. However, widget2
rede�nes the v property and also de�nes an additional property: z.

If Spring were to be redesigned to use Con�g4* instead of XML,
then the semantics of bean inheritance would be obtained without any
developer e�ort via the @copyFrom statement, as you can see in Figure 8.6.

8.6 The Bene�ts of Pre-set Variables

Conceptually, the contents of a Spring XML �le can be split into two
types of con�guration: static and runtime.

66 CHAPTER 8. THE SPRING FRAMEWORK

Figure 8.5: Example of Spring bean inheritance

<bean id = "widget1" class = "com.foo.bar.Widget">

<property name = "t" value = "..."/>

<property name = "u" value = "..."/>

<property name = "v" value = "..."/>

<property name = "w" value = "..."/>

<property name = "x" value = "..."/>

<property name = "y" value = "..."/>

</bean>

<bean id = "widget2" parent="widget1">

<property name = "v" value = "..."/>

<property name = "z" value = "..."/>

</bean>

Figure 8.6: Con�gt4* equivalent of Spring's bean inheritance

bean.widget1 {

class = "com.foo.bar.Widget";

property.t.value = "...";

property.u.value = "...";

property.v.value = "...";

property.w.value = "...";

property.x.value = "...";

property.y.value = "...";

}

bean.widget2 {

@copyFrom "bean.widget1";

property.v.value = "...";

property.z.value = "...";

}

Static con�guration. The values of id and class attributes, and the
values ofmost properties are likely to remain static for the duration
of the project or change only rarely.

Runtime con�guration. A small number of properties�with names
like host, port and logDir�are likely to change for each runtime
environment in which you deploy the application.

In a large, Spring-based application, the Spring XML �le might contain
thousands of lines of static con�guration and only a few lines of runtime

8.6. THE BENEFITS OF PRE-SET VARIABLES 67

con�guration. With such an application, it is undesirable to tell admin-
istrators, �Here is a 2000-line Spring XML �le; you need to be concerned
with only �ves lines in it: the logDir property on line 42, the host prop-
erty on line 837, . . . � From a usability perspective, it would be better
to tell administrators to modify a 5-line Java properties �le containing
only runtime con�guration variables, and arrange for the application to
(somehow) merge the contents of that properties �le with the 2000-line
Spring XML �le.

Spring provides a mechanism to merge the contents of a properties
�le with a Spring XML �le. However, before explaining the mechanism,
I need to provide some background information on Spring.

Spring creates Java objects from bean information in an XML �le in
a multi-step process, a slightly simpli�ed version of which is as follows:

1. Spring parses the XML �le, and stores the information in an in-
ternal format. This internal format is called bean con�guration
metadata, or metadata for short.

2. Spring iterates over metadata to �nd beans whose class attribute
indicate they implement the BeanFactoryPostProcessor interface
(which is de�ned by the Spring library). For each such bean, Spring
instantiates the bean and invokes two operations (de�ned in the
BeanFactoryPostProcessor interface) on it. The invocation of these
operations gives the bean the opportunity to modify metadata.

3. Spring is now ready to instantiate the �ordinary� beans de�ned by
the bean con�guration metadata.

Included in the Spring library is the PropertyPlaceholderConfigurer
class, which implements the BeanFactoryPostProcessor interface. This
class de�nes a location property that speci�es the location of a Java
properties �le. When a PropertyPlaceholderConfigurer bean is instan-
tiated (in step 2 of the above algorithm), it iterates over the metadata,
and replaces occurrences of "${property.name}" with the value of the
named property found in the properties �le. Figure 8.7 illustrates use of
a PropertyPlaceholderConfigurer bean.

Obviously, the Spring developers had to write code to implement the
PropertyPlaceholderConfigurer class. If Spring were to be redesigned
to use Con�g4* instead of XML, then there would be no need to imple-
ment the PropertyPlaceholderConfigurer class. This is because Con-
�g4* provides several ways to merge runtime con�guration with static
con�guration, as you can see in Figure 8.8.

68 CHAPTER 8. THE SPRING FRAMEWORK

Figure 8.7: Example use of the PropertyPlaceholderConfigurer bean

<bean class = "org.springframework.beans.factory.config.PropertyPlace

holderConfigurer">

<property name = "location" value = "/path/to/file.properties"/>

</bean>

<bean id = "widget1" class = "com.foo.bar.Widget">

<property name = "logDir" value = "${log.dir}"/>

<property name = "logLevel" value = "${log.level}"/>

</bean>

<bean id = "tcpServer" class = "com.foo.bar.TcpServer">

<property name = "host" value = "${tcp.host}"/>

<property name = "port" value = "${tcp.port}"/>

</bean>

Figure 8.8: Merging runtime and static con�guration with Con�g4*

@include getenv("FOO_CONFIG", "") if exists;

#--------

Default values for runtime configuration

#--------

log.dir ?= getenv("FOO_HOME") + "/log";

log.level ?= "2";

tcp.host ?= exec("hostname");

tcp.port ?= "8020";

bean.widget1 {

class = "com.foo.bar.Widget";

property.logDir.value = .log.dir;

property.logLevel.value = .log.level;

}

bean.tcpServer {

class = "com.foo.bar.TcpServer";

property.host.value = .tcp.host;

property.port.value = .tcp.port;

}

8.7. SUMMARY 69

The static con�guration �le can use the conditional assignment oper-
ator ("?=") to provide default values for runtime con�guration variables.
These variables can then be used to specify values for bean properties.
The default values of runtime con�guration variables can be overridden
in two ways.

One way, which is illustrated in Figure 8.8, is to use an @include

statement to access information in a runtime con�guration �le.
The other way is use preset con�guration variables (which is dis-

cussed in the Overview of the Con�g4* API chapter of the Con�g4*
Getting Started Guide). In essence, during initialisation, the applica-
tion iterates over command-line options of the form "-set name value",
and invokes cfg.insertString(name, value) for each such option. Doing
this, �presets� those variables in the Configuration object. Afterwards,
the application invokes cfg.parse("...") to parse a con�guration �le.

8.7 Summary

In this chapter, I have explored how the Spring framework might have
turned out di�erently if Con�g4* had been available when Spring was
�rst being developed. This exploration identi�ed two main bene�ts:

1. A Con�g4* syntax for de�ning Spring beans would have been more
concise than the corresponding XML syntax. This conciseness
would have bene�ted users because it would have made it easier to
write and maintain bean de�nitions.

2. The designers of Spring had to write code to implement several
signi�cant pieces of functionality because XML parsers did not
provide such functionality. Because Con�g4* does provide such
functionality, the developers of Spring would have had to write
less code if Con�g4* had been available to them.

I am not advocating that the Spring framework library be retro�tted
with support for Con�g4*. There are probably tens of millions of lines
of existing XML-based Spring con�guration �les in use across thousands
of organisations. I do not think the potential improvements that would
arise from the use of Con�g4* would justify the e�ort required for those
organizations to migrate their existing projects to use Con�g4* syntax.

Rather, the purpose of chapter has been to illustrate that Con�g4*
is a suitable alternative to XML for future projects that have complex
con�guration requirements. The next time you are about to start work

70 CHAPTER 8. THE SPRING FRAMEWORK

on a new XML-based project, it might be worthwhile to stop and explore
the question, �Might it be better to use Con�g4* instead of XML?�
You might discover that using Con�g4* will reduce the complexity of
implementing the project and improve its user-friendliness.

Part III

The Con�g4JMS Case

Study

71

Introduction to Part III

Con�g4JMS is a library, built with the aid of Con�g4*, that simpli�es
use of the Java Message Service (JMS). You can �nd Con�g4JMS in the
config4jms subdirectory of Con�g4J. Con�g4JMS o�ers two signi�cant
bene�ts.

� Applications built with Con�g4JMS are signi�cantly easier to write,
more portable and more �exible than applications build against the
raw JMS API.

� Con�g4JMS makes it easy for an inexperienced developer to �play
with� JMS concepts and proprietary features provided by a JMS
vendor. This can shave several days or even weeks o� the time
required for a developer to learn to use a JMS product.

There are several thousand lines of Java source code in the Con-
�g4JMS library, and the library provides a feature-rich but concise API.
These characteristics mean that Con�g4JMS can be used as the basis
for a case study of how Con�g4* can be used �in anger�. That is the
purpose of this part of the manual.

I start this case study, in Chapter 9, by providing an overview of
JMS.

73

74

Chapter 9

Overview of JMS

9.1 Introduction

Message-oriented middleware (MOM) is software for building distributed
applications that communicate by sending messages to each other. JMS
is a standardised Java API for MOM products. This chapter provides
an overview of JMS. Then, the next chapter explains how Con�g4JMS
provides a simpli�ed �wrapper� for JMS.

9.2 Terminology and Concepts

In JMS terminology, an application that sends a message is called a
producer, and an application that receives a message is called a consumer
(or sometimes a subscriber). It is common for a JMS-based application
to act as both a producer and a consumer at the same time. JMS o�ers
two di�erent approaches for message-based communication: queues and
topics.

A queue provides one-to-one communication. A producer sends a
message to a queue, and the message is stored on the queue until it can
be delivered to one consumer.

A topic provides one-to-many communication. A producer applica-
tion sends a message to a topic. The message will be delivered to all
the consumer applications that are currently registered as subscribers of
that topic. By default, a subscriber registration lasts only while a con-
sumer application is running�when a consumer application terminates,

75

76 CHAPTER 9. OVERVIEW OF JMS

any subscriber registrations it had will lapse automatically. However,
if a consumer application registers itself as a durable subscriber to a
topic, then the topic will store messages for a durable subscriber that
is currently not running, and will deliver those messages later when the
durable subscriber is restarted.

9.3 Portability

It is possible to imagine many di�erent qualities of service that might
be provided by a MOM product. For example, is there a maximum size
of message that can be sent to a queue or topic? Is there a maximum
number of messages that can be stored in a queue? Should a not-yet-
delivered message be discarded if it has not been delivered within a
speci�c period of time? Should messages transmitted across a network
be sent in an encrypted format? Or perhaps in a compressed format?

JMS takes a two-pronged approach to standardising such qualities of
service.

� Most of the interfaces in the JMS speci�cation contain set<Name>()

operations that can be invoked to set a desired quality of service.

� The JMS standardisation committee realised there was too much
variation across the proprietary features in existing MOM products
to be able to standardise everything with set<Name>() operations.
However, they felt most of the proprietary features that could not
be standardised in this manner were con�ned to the concepts of a
destination (the genetic term for a queue or topic) and a connection
(so called because it is often implemented as a socket connection
from an application to a MOM product).

The committee decided that portability for JMS applications could
be achieved by specifying the proprietary qualities of service for
connections and destinations outside application code. It was en-
visaged that an administrator would pre-create destination objects
with proprietary qualities of service, and advertise these destina-
tion objects in a naming service. A JMS application would then
retrieve pre-created destination objects from the naming service.
Likewise, an administrator would pre-create a connection factory
with proprietary qualities of service, and advertise it in a naming
service. A JMS application would retrieve this factory object from

9.4. PROBLEMS WITH JMS 77

the naming service and use it to create connections. A connec-
tion object created in this manner would have whatever qualities
of service its factory had.

The JMS speci�cation uses the term administered objects to refer
to connection factories and destinations because of the intention
that such objects would be created by an administrator rather than
by application code.

Another portability issue that the JMS standardisation committee
had to consider was thread safety. The entire API of one MOM product
might be thread-safe, but another MOM product might provide a mix-
ture or thread-safe and thread-unsafe operations. The approach taken to
deal with this was to introduce the concept of a session object that appli-
cation developers should assume is not thread-safe. The developer of a
multi-threaded application is required to create multiple session objects:
one for each thread.

9.4 Problems with JMS

JMS is good but, like any technology, it is not perfect. In this section I
discuss some irritations and imperfections in JMS that I have discovered.
I do this to motivate the development and bene�ts of Con�g4JMS.

9.4.1 Books and Manuals Advocate the Legacy API

The JMS 1.0 speci�cation de�ned one set of interfaces for communication
via queues, and a separate set of interfaces for communication via topics.

The JMS 1.1 speci�cation provides a uni�ed set of interfaces that can
be used for communication with both queues or topics. For backwards
compatibility, the JMS 1.1 speci�cation continues to support the original
(queue-speci�c and topic-speci�c) interfaces.

There are several reasons why developers should use the JMS 1.1
API in new applications. First, the JMS 1.1 speci�cation warns that the
original API might be deprecated in a future version of the speci�cation.
Second, the uni�ed API provides more opportunities for optimisation in
JMS products. Third, the uni�ed API in JMS 1.1 is more concise and
easier to use than the original API.

Despite the signi�cant bene�ts of the uni�ed API, books and product
manuals continue to use the original API in worked examples. This can

78 CHAPTER 9. OVERVIEW OF JMS

result in developers who are new to JMS needlessly learning an outdated,
verbose API instead of the newer, more concise API.

9.4.2 Confusingly Many Initialisation Steps

A portable JMS application must complete many initialisation steps be-
fore it can do �real� work. For example, an application acting as both a
producer and a consumer typically carries out nine initialisation steps:

1. Connect to a naming service.

2. Retrieve one or more Destination objects from the naming service.

3. Retrieve a ConnectionFactory object from the naming service.

4. Invoke createConnection() on the ConnectionFactory object to
create a Connection object.

5. Create two Session objects by invoking createSession() twice on
the Connection object.

6. Invoke createProducer() on one of the Session objects (passing a
Destination object as a parameter) to create a Producer object.

7. Invoke createConsumer() on the other Session object (passing a
Destination object as a parameter) to create a Consumer object.

8. Create and register a MessageListener object on the Consumer ob-
ject. (A MessageListener is a callback interface whose onMessage()
operation is invoked whenever a Consumer receives a message.)

9. Invoke start() on the Connection object.

Psychological research indicates that most people can remember only
about seven new pieces of information at a time [Mil56]. Because of
this limit, the nine-step initialisation sequence provides a hurdle for new
developers to master. This is a shame, because once initialisation is
complete, using JMS is straightforward.

9.4.3 Requiring Programmers to Learn Administra-
tion Skills

The �rst initialisation step discussed in Section 9.4.2 is to connect to
a naming service that has been populated with ConnectionFactory and

9.4. PROBLEMS WITH JMS 79

Destination objects. As I explained in Section 9.3 on page 76, the in-
tention is that those objects will be created with proprietary qualities of
services (via proprietary administration tools) by an administrator; in
this way, application code is not polluted with the setting of proprietary
qualities of service.

When an application is being deployed in a production environment,
there may well be an administrator available to create the Destination

and ConnectionFactory objects, and advertise them in a naming service.
However, such an administrator is unlikely to be available during initial
application development. This means that JMS developers have to learn
how to carry out such administration tasks themselves. In fact, a devel-
oper who is starting to learn JMS will have to learn those administration
skills before being able to write a portable, �Hello, World�-type JMS ap-
plication. This is yet another hurdle for new developers to master.

9.4.4 Only Partial Portability in JMS

In Section 9.3 on page 76, I outlined the approach used in the JMS
speci�cation to provide portability of JMS-based applications. Unfortu-
nately, the approach used is only partially successful. It is very easy for
developers to feel tempted�or sometimes be required�to use vendor-
proprietary functionality in a JMS-based application.

In the relatively short period of time I have spent using JMS, I noticed
four reasons why a developer might resort to using a proprietary API.

First, obtaining Destination and ConnectionFactory objects from a
naming service is inconvenient�especially for a developer new to JMS
who does not want to have to spend time learning JMS administration
commands before being able to write an application. It is usually more
convenient to use vendor-proprietary functions to create Destination

and ConnectionFactory objects directly.

Second, it is common for JMS products to o�er qualities of service
above and beyond those de�ned in the JMS speci�cation. If these qual-
ities of service are related to, say, Session, Producer or Consumer, then
it is natural for a vendor to provide proprietary set<Name>() operations
on those types. Put simply, not all proprietary qualities of service can
be encapsulated in administered objects.

Third, when a JMS-related operation fails, it throws a (subtype of)
JMSException. The developer of an application might wish to process a
caught exception in one of several ways, depending on the nature of the
exception. However, the JMS speci�cation states that two out of the

80 CHAPTER 9. OVERVIEW OF JMS

three pieces of information provided by JMSException are proprietary to
a JMS vendor. Because of this, a developer may need to rely on vendor-
proprietary information contained in an exception when deciding how to
process it.

Finally, JMS speci�es that a message is composed of three parts:
(1) header �elds, (2) arbitrary properties (that is, name=value pairs),
and (3) a body. The intended use of (2) is to support �exible message
selection in consumer applications. For example, a producer application
running in, say, London, might add location=London to a message's
properties before sending the message. A Consumer application could
then use the message selector "(location = ’London’)" to ensure it re-
ceives only messages with that property value. The JMS speci�cation
reserves property names starting with "JMS_<vendor>" for use by JMS
vendors. Some vendors use such properties to specify a proprietary qual-
ity of service on a per message basis. A developer who wishes to make
use of a proprietary, per-message quality of service will have to modify
the code of a producer application so it sets the proprietary property
prior to sending a message.

9.5 Critique: The 80/20 Principle

You may be familiar with some variations of the Pareto Principle, also
known as the 80/20 Principle:1

1. 80% of the wealth in a country is owned by 20% of the population.

2. 80% of CPU time is spent in 20% of the code.

3. A business gets 80% of its income from 20% of its customers.

4. 80% of the work in a company is done by 20% of the employees.

Sometimes the 80/20 Principle can suggest how to make large im-
provements for a relatively small investment of e�ort. For example, if
you want to optimise an application for speed, then item 2 in the above
list suggests you should use a pro�ling tool to identify the most CPU-
intensive parts of the application, so you can focus your optimisation
e�orts on them.

There is a little-known variant of the 80/20 Principle that I often
�nd useful:

1http://en.wikipedia.org/wiki/Pareto_principle

9.5. CRITIQUE: THE 80/20 PRINCIPLE 81

80% of a product's complexity is in 20% of its functionality.

If you want to increase a product's ease of use, then you should identify
its few areas of disproportionate complexity, so you can focus your ease-
of-use e�orts on them.

The problems discussed in Section 9.4 account for most of the com-
plexity in JMS, but only a minority of its functionality. The goal of
Con�g4JMS, which is discussed in the next chapter, is to put a �sim-
pli�cation wrapper� around those disproportionately complex parts of
JMS.

82 CHAPTER 9. OVERVIEW OF JMS

Chapter 10

Con�g4JMS Functionality

10.1 Introduction

In this chapter, I discuss the functionality provided by Con�g4JMS. I
start by explaining the structure of a Con�g4JMS con�guration �le.
Then, I discuss the API of Con�g4JMS. Finally, I explain how use of
Con�g4JMS can increase the portability of applications.

10.2 Syntax

Figure 10.1 shows an example of a con�guration �le used by Con�g4JMS.
The conditional assignment operator ("?=") is used to assign default

values to the variables in the global scope. Those default values can be
overridden by, for example, an application's command-line options.

The chat scope contains Con�g4JMS-related con�guration informa-
tion for an application. Most of the entries within the chat scope are
nested sub-scopes that specify details of how to create JMS-related ob-
jects. For example, the Topic.chatTopic scope speci�es how to create
a Topic object called chatTopic, and Session.prodSession speci�es how
to create a Session object called prodSession.

JNDI is an acronym for the Java Naming and Directory Interface.
The jndiEnvironment variable speci�es details of how to connect to a
naming service.

The Topic.chatTopic scope contains the following variable:

obtainMethod = "jndi#SampleTopic1";

83

84 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

Figure 10.1: Example Con�g4JMS con�guration �le

username ?= "";

password ?= "";

messageSelector ?= "";

chat {

config4jmsClass = "org.config4jms.portable.Config4JMS";

jndiEnvironment = [

name value

#--

"java.naming.factory.initial", "...",

"java.naming.provider.url", "...",

"java.naming.security.principal", .username,

"java.naming.security.credentials", .password,

];

Topic.chatTopic {

obtainMethod = "jndi#SampleTopic1";

}

ConnectionFactory.factory1 {

obtainMethod = "jndi#SampleConnectionFactory1";

}

Connection.connection1 {

createdBy = "factory1";

create {

userName = .username;

password = .password;

}

}

Session.prodSession {

createdBy = "connection1";

create {

transacted = "false";

acknowledgeMode = "AUTO_ACKNOWLEDGE";

}

}

Session.consSession {

createdBy = "connection1";

create {

transacted = "false";

acknowledgeMode = "AUTO_ACKNOWLEDGE";

}

}

... continued on the next page

10.2. SYNTAX 85

Figure 10.1 (continued): Example Con�g4JMS con�guration �le

... continued from the previous page

TextMessage.chatMessage {

createdBy = "prodSession";

JMSExpiration = "10 hours";

JMSPriority = "7";

properties = [

name type value

#------------------------------

"location", "string", "London",

];

}

MessageProducer.chatProducer {

createdBy = "prodSession";

create.destination = "chatTopic";

deliveryMode = "PERSISTENT";

timeToLive = "2 minutes";

}

MessageConsumer.chatConsumer {

createdBy = "consSession";

create {

destination = "chatTopic";

messageSelector = .messageSelector;

noLocal = "false";

}

}

}

That variable speci�es Con�g4JMS should obtain the chatTopic object
by invoking lookup("SampleTopic1") on the naming service. An alter-
native setting for this variable might be:

obtainMethod = "file#/path/to/file/containing/a/serialised/java/object";

The createdBy variable in the Connection.connection1 scope speci�es
that the connection1 object is created by (invoking a factory method
on) the object named factory1, which is of type ConnectionFactory.
The create sub-scope speci�es the parameter values to be used when
invoking the factory operation.

In a similar way, the two Session objects are created by invoking a
factory method on the connection1 object.

The MessageProducer.chatProducer scope speci�es that the object
called chatProducer is created by the prodSession object, and that the

86 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

destination parameter passed to the factory operation is the chatTopic
object. This scope also speci�es values for two properties:

deliveryMode = "PERSISTENT";

timeToLive = "2 minutes";

Con�g4JMS invokes the setDeliveryMode() and setTimeToLive() opera-
tions on the object to set those properties. When doing do, Con�g4JMS
converts "PERSISTENT" into the appropriate integer constant, and con-
verts "2 minutes" into the appropriate number of milliseconds.

Although the example con�guration �le shows only two properties
being set, Con�g4JMS can be used to set any of the properties de�ned
in the JMS speci�cation. As I will discuss in Section 10.4, it is possible
for Con�g4JMS to also set properties that are proprietary to a JMS
product.

10.3 API

The API of Con�g4JMS is de�ned in the org.config4jms.Config4JMS

class, which is shown in Figure 10.2. For brevity, throws clauses are not
shown in Figure 10.2.

Rather than discuss every operation individually, I will use the sample
code in Figure 10.3 to illustrate basic usage of the Con�g4JMS API. Then
afterwards, I will discuss any remaining operations not illustrated by the
example.

10.3.1 Basic Usage

The code in Figure 10.3 is an extract from the Chat.java sample appli-
cation (in the samples/chat sub-directory of Con�g4JMS).

The code populates a HashMap with name=value pairs for a username
and password. In the full Chat.java application, the HashMap is populated
via command-line options.

Then the Config4JMS.create() factory operation is invoked to create
a Config4JMS object. The �rst two parameters to this factory operation
specify a con�guration �le (such as that shown in Figure 10.1 on page 84)
and a scope within that �le. The third parameter is the HashMap con-
taining name=value pairs. Con�g4JMS uses these to �preset� variables
in a Configuration object before parsing the speci�ed con�guration �le.
In this way, these preset variables can override the default values of vari-
ables initialised with the conditional assignment operator ("?=") in the

10.3. API 87

Figure 10.2: Con�g4JMS API

package org.config4jms;

//--------

// Most operations can throw a Config4JMSException.

// However, the "throws" clause is omitted for brevity.

//--------

public abstract class Config4JMS {

//--------

// No public constructor. Use these create() operations instead.

//--------

public static Config4JMS create(String cfgSource,

String scope,

Map cfgPresets);

public static Config4JMS create(String cfgSource,

String scope,

Map cfgPresets,

String[] typeAndNamePairs);

//--------

// Retrieve an object by name.

//--------

public Object getObject(String type, String name);

public ConnectionFactory getConnectionFactory(String name);

public Connection getConnection(String name);

public Session getSession(String name);

public Destination getDestination(String name);

public Queue getQueue(String name);

public Queue getTemporaryQueue(String name);

public Topic getTopic(String name);

public Topic getTemporaryTopic(String name);

public MessageProducer getMessageProducer(String name);

public MessageConsumer getMessageConsumer(String name);

public QueueBrowser getQueueBrowser(String name);

//--------

// Connection operations.

//--------

public void setExceptionListener(ExceptionListener listener);

public void startConnections();

public void stopConnections();

public void closeConnections();

... continued on the next page

88 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

Figure 10.2 (continued): Con�g4JMS API

... continued from the previous page

//--------

// Message operations

//--------

public Message createMessage(String name);

public void applyMessageProperties(String name, Message msg);

//--------

// List the names of objects of different types.

//--------

public String[] listConnectionFactoryNames();

public String[] listConnectionNames();

public String[] listSessionNames();

public String[] listDestinationNames();

public String[] listQueueNames();

public String[] listTemporaryQueueNames();

public String[] listTopicNames();

public String[] listTemporaryTopicNames();

public String[] listMessageProducerNames();

public String[] listMessageConsumerNames();

public String[] listQueueBrowserNames();

public String[] listMessageNames();

public String[] listBytesMessageNames();

public String[] listMapMessageNames();

public String[] listObjectMessageNames();

public String[] listStreamMessageNames();

public String[] listTextMessageNames();

//--------

// Frequently used miscellaneous operations

//--------

public void createJMSObjects();

public Configuration getConfiguration();

public boolean isNoConnection(JMSException ex);

//--------

// Rarely used miscellaneous operations

//--------

public Object importObjectFromJNDI(String path);

public Object importObjectFromFile(String fileName);

}

10.3. API 89

Figure 10.3: Example Use of Config4JMS

HashMap cfgPresets = new HashMap();

Config4JMS jms = null;

MessageProducer producer = null;

TextMessage msg = null;

//--------

// Initialisation

//--------

try {

cfgPresets.put("username", "Fred");

cfgPresets.put("password", "123456");

jms = Config4JMS.create("example.cfg", "chat", cfgPresets,

new String[] {"MessageConsumer", "chatConsumer",

"MessageProducer", "chatProducer",

"TextMessage", "chatMessage"});

jms.createJMSObjects();

jms.getMessageConsumer("chatConsumer").setMessageListener(this);

producer = jms.getMessageProducer("chatProducer");

jms.startConnections();

} catch(JMSException ex) {

System.err.println(ex.toString());

try {

if (jms != null) { jms.closeConnections(); }

} catch(JMSException ex) {

System.err.println(ex.toString());

}

System.exit(1);

}

//--------

// Sample producer code

//--------

msg = (TextMessage)jms.createMessage("chatMessage");

msg.setText("Hello, World");

producer.send(msg);

con�guration �le. The last (and optional) parameter to create() is an
array of pairs of strings. Each pair speci�es the type and name of an
object that is expected to be speci�ed in the con�guration �le. In e�ect,
this parameter speci�es a contract between the con�guration �le and the
Java code. (If the contents of the con�guration �le do not satisfy the

90 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

contract, then Config4JMS.create() throws an exception.) This contract
enables a Java developer to not have to continually refer back to a con-
�guration �le to verify the types and names of the JMS objects being
used in the Java code.

The create() operation parses the speci�ed con�guration �le, per-
forms schema validation on the speci�ed scope, and ensures that the
con�guration �le de�nes the expected objects of the speci�ed type and
name. The create() operation also copies the con�guration information
into a more convenient internal format.

The createJMSObjects() operation instructs Con�g4JMS to create
all the objects de�ned in the con�guration �le.

After createJMSObjects() has been invoked, an application can call
get<Type>() operations to retrieve speci�c objects by name. For ex-
ample, getMessageConsumer("chatConsumer") returns the chatConsumer

object of type MessageConsumer.

The startConnections() operation instructs Con�g4JMS to invoke
the start() operation on all the Connection objects that it created
from information in the con�guration �le. Likewise, closeConnections()
causes close() to be invoked on all the Connection objects.

Each time createMessage() is called, it creates a new Message ob-
ject. It sets headers speci�ed in con�guration (such as JMSExpiration

and JMSPriority) and can also set type-speci�c name=value pairs as
indicated in the properties con�guration variable.

10.3.2 Other Operations

The example in Figure 10.3 illustrates most of the commonly-used op-
erations provided by Config4JMS. I now quickly summarise its remaining
operations.

Calling applyMessageProperties() on an existing Message object re-
sets the object's headers and properties to values speci�ed in the named
con�guration scope.

Each list<Type>Names() operation returns an array of the names
of objects of the speci�ed type. For example, when using the con�g-
uration �le shown in Figure 10.1 on page 84, the listSessionNames()

operation would return a list containing two strings: "prodSession" and
"consSession".

The getConfiguration() operation returns a reference to the Con-
�g4* Configuration object used internally by the Config4JMS object.

10.4. ACCESSING PROPRIETARY FEATURES 91

The setExceptionListener() operation instructs Con�g4JMS to reg-
ister an ExceptionListener object on all the Connection objects created
from information in the con�guration �le.

The isNoConnection() operation examines a JMSException to de-
termine if it was caused by a broken socket connection. A developer
might use this operation in combination with setExceptionListener()

to write an application that can detect when its connection to JMS in-
frastructure is broken, and attempt to re-establish the connection. The
ReconnectableChat.java sample application (in the samples/chat sub-
directory of Con�g4JMS) illustrates this technique.

The importObjectFromJNDI() operation uses the speci�ed path to
lookup an object from the naming service that was con�gured via the
jndiEnvironment con�guration variable.

The importObjectFromFile() operation reads a serialised Java object
from the speci�ed fileName.

10.4 Accessing Proprietary Features

Config4JMS is an abstract base class. Its static create() operation uses
re�ection to instantiate a concrete subclass. The name of the concrete
subclass is speci�ed by the config4jmsClass variable in the runtime con-
�guration �le. The example con�guration �le shown in Figure 10.1 on
page 84 sets that variable as follows:

config4jmsClass = "org.config4jms.portable.Config4JMS";

That class has been coded to recognise only con�guration entries that
re�ect the standardised API of JMS. I have implemented another class
that recognises the standard API plus proprietary enhancements of the
SonicMQ implementation of JMS. You can use that class with the fol-
lowing setting:

config4jmsClass = "org.config4jms.sonicmq.Config4JMS";

I do not have any experience of other JMS products, but I imagine
it should be possible to write additional subclasses of Config4JMS that
support their proprietary enhancements.

If the value of config4jmsClass speci�es the SonicMQ-speci�c class,
then you can use SonicMQ-proprietary features in a straightforward
manner, as I now discuss.

You can create instances of SonicMQ-proprietary types by creating
appropriate con�guration scopes:

92 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

MultiTopic.myTopic { ... }

XMLMessage.myMessage { ... }

You can set SonicMQ-proprietary properties in the same manner that
you set JMS-standardised properties:

MessageConsumer.chatConsumer {

createdBy = "consSession";

create { ... }

prefetchCount = "5"; # proprietary to SonicMQ

prefetchThreshold = "2"; # proprietary to SonicMQ

}

The con�guration �le in Figure 10.1 on page 84 retrieves administered
objects from the naming service by setting obtainMethod to a value of
the form "jndi#...", as I repeat below for ease of reference:

Topic.chatTopic {

obtainMethod = "jndi#SampleTopic1";

}

ConnectionFactory.factory1 {

obtainMethod = "jndi#SampleConnectionFactory1";

}

Within a ConnectionFactory sub-scope, if you set obtainMethod to the
value "create", then you can create a ConnectionFactory using a pro-
prietary constructor and use properties to specify a proprietary quality
of service for it:

ConnectionFactory.factory1 {

obtainMethod = "create";

create { # parameters to constructor

brokerURL = "...";

defaultUserName = "...";

defaultPassword = "...";

}

faultTolerant = "true; # proprietary property

flowToDisk = "ON"; # proprietary property

}

Within a Topic or Queue sub-scope, setting obtainMethod to the value
"create" enables you to create a topic or queue by invoking a factory
operation on a Session object:

10.5. BENEFITS 93

Topic.chatTopic {

obtainMethod = "create";

createdBy = "prodSession";

create { # parameters to constructor

topicName = "...";

}

}

The JMS speci�cation de�nes factory operations on Session for creat-
ing destination object. However, the JMS speci�cation does not de�ne
allowable values for the queueName or topicName parameter; such values
are vendor-proprietary, which is why using factory operations to create
destination objects is considered proprietary.

10.5 Bene�ts

Con�g4JMS o�ers several signi�cant bene�ts, most of which are due to
it enforcing a separation of concerns:1 it separates the initialisation of
JMS from the �business logic� code that uses JMS.

10.5.1 Code Readability

As I explained in Section 9.4.2 on page 78, the initialisation of JMS is
verbose enough to confuse developers who are new to JMS. By encapsu-
lating the initialisation steps in a con�guration �le, a new developer can
write that once, forget about it, and then focus on the �business logic�
code in a Java �le.

For example, in the source code of Figure 10.3 on page 89, the pro-
grammer need be concerned with just three JMS objects: a TextMessage,
MessageConsumer and a MessageProducer. The other six JMS-related ob-
jects (a naming service, Topic, ConnectionFactory, Connection, and two
Session objects) are really just �initialisation baggage� that has been
encapsulated by Con�g4JMS.

The impact on code readability of encapsulating �initialisation bag-
gage� can be dramatic. For example, the Chat.java demo supplied with
Con�g4JMS contains signi�cantly less code and is easier to understand
than an equivalent demos written using the raw API of JMS.

1http://en.wikipedia.org/wiki/Separation_of_concerns

94 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

10.5.2 Con�gurability

A lot of JMS behaviour is determined by qualities of service, for example,
timeout values and whether messages are persistent. All these qualities
of service can be expressed in a Con�g4JMS con�guration �le, which
means that a Con�g4JMS-based application is highly con�gurable by
default.

In contrast, if an application uses just the raw API of JMS, then
its developer must explicitly write extra code to: (1) retrieve qualities
of service information from a runtime con�guration �le, and (2) invoke
the appropriate set<Name>() operations to apply them. If a developer is
too busy or lazy to write such code, then the application will provide a
hard-coded rather than con�gurable quality of service.

10.5.3 A Portable Way to Use Proprietary Features

Consider the following scenario. A producer application does not send
any messages for an extended period of time, but then it sends a burst
of, say, a hundred large messages, before going silent again. Such bursts
of messages might cause a backlog of tra�c to be sent via JMS, and this
backlog might cause communications between applications to slow down
while the backlog of messages is being transmitted.

The JMS speci�cation does not o�er any help to deal with a potential
slowdown caused by a burst of many messages. However, some JMS
products provide proprietary enhancements for dealing with this. For
example, the SonicMQ2 product, provides a �ow control feature that can
throttle back the rate of message �ow from a producer, and a separate
�ow to disk feature that can be used by consumer applications that
cannot process a sudden burst of messages fast enough.

If you are using SonicMQ when developing a JMS application, then
you might be be tempted to make use of the �ow control and �ow to disk
features. Unfortunately, hard-coding use of these proprietary features
into the Java code of your application would make your application non-
portable to other JMS products. But if you use Con�g4JMS, then you
can specify the use of these features in a con�guration �le. In this way,
your Java code remains portable. If you later migrate to another JMS
product, then you need only modify the con�guration �le to remove
use of the SonicMQ-proprietary features and, optionally, make use of
features proprietary to the replacement JMS product.

2http://web.progress.com/en/sonic/sonicmq.html

10.5. BENEFITS 95

10.5.4 Reusability of Demonstration Applications

A JMS product might contain a dozen or more demonstration appli-
cations. One application is hard-coded to demonstrate communication
via queues. A second application is hard-coded to demonstrate commu-
nication via topics. A third application is hard-coded to demonstrate
the use of durable subscribers with topics. Several more applications
are hard-coded the demonstrate the use of JMS-compliant qualities of
service (using a separate application to demonstrate each quality of ser-
vice). Yet more applications are hard-coded to demonstrate the use of
vendor-proprietary qualities of service. And so on.

By using Con�g4JMS, a JMS vendor can signi�cantly reduce the
number of demonstration applications that need to be provided with a
product. For example, the Chat.java application supplied with Con-
�g4JMS can be used to demonstrate: (1) communication via queues;
(2) communication via topics; (3) the use of durable subscribers with
topics; (4) di�erent JMS-compliant qualities of service; (5) di�erent
vendor-proprietary qualities of service. All that is needed is to mod-
ify the application's Con�g4JMS con�guration �le to specify the desired
type of communication and the desired qualities of service.

Shipping a JMS product with a small number of highly con�gurable
Con�g4JMS-based demonstration applications o�ers several bene�ts.

First, it bene�ts the JMS vendor because fewer demonstration appli-
cations have to be written, maintained and documented.

Second, it can shorten the learning curve for developers who are new
to JMS or new to the proprietary features of a JMS product. This
is because the develops can �play with� JMS concepts and proprietary
features without having to write any code�instead, they just edit a
con�guration �le. This shortening of the learning curve bene�ts not just
developers employed by customers, but also newly employed technical
sta� of the JMS vendor.

Third, a Con�g4JMS-enabled demonstration application can be con-
�gured to obtain Destination and ConnectionFactory objects: (1) by
invoking proprietary factory operations; or (2) from a pre-populated
naming service. A developer who is learning to how use a JMS product
can use technique (1) initially, and then switch to (2) later after learning
how to do the required administration tasks. This means that a devel-
oper does not need to learn administration skills before being able to
write a portable JMS application.

Finally, if a customer discovers a bug in a JMS product, then Con-

96 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

�g4JMS makes it easier for the customer to submit a test case. This
is because a test case is likely to consist of a small amount of Java
code (perhaps one of the demonstration applications supplied with the
JMS product), plus a con�guration �le. In fact, the adaptive con�gura-
tion capabilities Con�g4* might sometimes make it possible for a single
con�guration �le to demonstrate a bug and a workaround for it. This
possibility is illustrated by the con�guration �le shown in Figure 10.4.

Figure 10.4: Flexible test-case con�guration �le

workAroundBug ?= "false";

chat {

config4jmsClass = "org.config4jms.acme.Config4JMS";

jndiEnvironment = [...];

Topic.chatTopic { ... }

ConnectionFactory.factory1 { ... }

Connection.connection1 { ... }

Session.prodSession {

createdBy = "connection1";

create {

transacted = "false";

acknowledgeMode = "AUTO_ACKNOWLEDGE";

}

@if (.workAroundBug == "true") {

... # set a proprietary property to one value

} @else {

... # set the proprietary property to another value

}

}

Session.consSession { ... }

TextMessage.chatMessage { ... }

MessageProducer.chatProducer { ... }

MessageConsumer.chatConsumer { ... }

}

Let's assume that, using that con�guration �le, the buggy behaviour
can be illustrated by running the following command:

java TestCase -cfg test-case.cfg -scope chat

Then, by using a command-line option to �preset� the workAroundBug

variable to true, the workaround for the bug can be illustrated:

java TestCase -cfg test-case.cfg -scope chat -set workAroundBug true

10.6. DRAWBACKS 97

10.6 Drawbacks

Con�g4JMS has only a few, relatively minor drawbacks. I discuss them
here for the sake of completeness.

10.6.1 Only Two Implementations So Far

To date, there are only two implementations of Con�g4JMS: one that
provides access to only the portable API of JMS; and another implemen-
tation that provides access to that portable API plus the proprietary
features of the SonicMQ product. It would be good to see Con�g4JMS
enhanced to provide additional implementations that support the pro-
prietary features of other JMS vendor products.

I am not aware of any technical issues that might make it di�cult
to enhance Con�g4JMS in this way. I estimate that a person who is
already knowledgeable about a particular JMS product could extend
Con�g4JMS to support its proprietary features with a few days of e�ort
(at most).

10.6.2 Lack of Support for Legacy API

Currently, Con�g4JMS supports only the uni�ed API of JMS 1.1. It
should be easy to add support for the legacy API of JMS 1.0, if the need
ever arises. However, I view the lack of support for the legacy API as
being a bene�t because, as I explained in Section 9.4.1 on page 77, there
are several drawbacks (and no bene�ts) associated with use of the legacy
API.

10.7 Summary

In this chapter, I have explained how Con�g4JMS hides a lot of that
complexity of JMS. The syntax of a Con�g4JMS con�guration �le is
straightforward and the API is easy to use. Despite this simplicity,
Con�g4JMS o�ers some signi�cant bene�ts.

� The confusingly many initialisation steps for a JMS application
can be encapsulated in a con�guration �le, and Java code can then
focus on implementing the �business logic� code of an application.
This separation of concerns helps to improve code readability.

98 CHAPTER 10. CONFIG4JMS FUNCTIONALITY

� It is common for a JMS-based application to hard-code a particular
quality of service. In contrast, a Con�g4JMS-based application
expresses all qualities of service in a con�guration �le, which makes
the application highly con�gurable by default.

� The use of proprietary features of a JMS product can be encapsu-
lated in a con�guration �le, thus preserving the portability of Java
application code.

� Con�g4JMS makes it easy for developers to �play with� JMS con-
cepts or the proprietary features of a product without having to
write much, if any, Java code. This can signi�cantly reduce the
learning curve for developers new to JMS or a particular JMS
product.

In the previous chapter, I explained how one variant of the 80/20 Prin-
ciple applied to JMS: 80% of a product's complexity is in 20% of its
functionality. Con�g4JMS hides most of that complexity.

Chapter 11

Architecture of

Con�g4JMS

11.1 Introduction

In this chapter, I discuss how Con�g4JMS makes e�ective use of Con-
�g4* and its schema language. However, to help readers understand why
Con�g4JMS uses Con�g4* in the way it does, I �rst need to provide an
overview of the architecture of Con�g4JMS.

11.2 Packages

The source code of Con�g4JMS is spread over four packages:

org.config4jms

org.config4jms.base

org.config4jms.portable

org.config4jms.sonicmq

The org.config4jms package contains just two classes. One of these,
Config4JMS, is an abstract base class that de�nes the API of Con�g4JMS.
The other class, Config4JMSException.java, inherits from JMSException.

The org.config4jms.base package contains some basic functionality
that is used by the classes in both the portable and sonicmq packages.

The org.config4jms.portable package contains a concrete subclass
of Config4JMS, plus supporting classes. The concrete subclass, which is
also called Config4JMS, supports the standardised API of JMS.

99

100 CHAPTER 11. ARCHITECTURE OF CONFIG4JMS

The org.config4jms.sonicmq package contains a concrete subclass of
Config4JMS, plus supporting classes. This concrete subclass, which is
also called Config4JMS, supports the standardised API of JMS plus pro-
prietary enhancements that are speci�c to the SonicMQ implementation
of JMS.

I considered having the classes in the sonicmq package inherit from
their counterparts in the portable package. However, I decided against
this approach because I felt it might result in the anti-pattern known
as the yo-yo problem.1 Instead, I felt it was better (or, at least, less
bad) to employ the �code reuse by copy-and-pasting� anti-pattern. If
you wish to extend Con�g4JMS to support another implementation of
JMS called, say, Foo, then you can do this by creating a package called
org.config4jms.foo, copying all the �les from the portable package into
this new package, and then modifying the copied �les to add support for
Foo-proprietary features.

11.3 Important Classes

Abridged details of three important classes in the org.config4jms.base

package are shown in Figure 11.1. I will discuss each of the three classes
in turn.

11.3.1 The Info Class

There is a subclass of Info for each JMS-related type. For exam-
ple, the ConnectionInfo class is for the JMS Connection type, and the
SessionInfo class is for the JMS Session type. One entire set of sub-
classes of Info are de�ned in the portable package. Another entire set
of subclasses of Info are de�ned in the sonicmq packages.

The con�guration �le in Figure 10.1 on page 84 de�nes may scopes
for JMS objects. Con�g4JMS creates an instance of the appropriate Info
subclass for each of those scopes. For example, Con�g4JMS creates a
ConnectionInfo object for the Connection.connection1 scope, and cre-
ates two SessionInfo objects: one for the Session.prodSession scope,
and another for the Session.consSession scope.

A concrete subclass of Info implements its operations as follows.

� The validateConfiguration() operation performs schema valida-
tion of the con�guration scope for the object. For e�ciency, this

1http://en.wikipedia.org/wiki/Yo-yo_problem

11.3. IMPORTANT CLASSES 101

Figure 11.1: Important classes in the org.config4jms.base package

public abstract class Info

{

public abstract void validateConfiguration()

throws Config4JMSException;

public abstract void createJMSObject()

throws Config4JMSException;

public abstract Object getObject();

... // other operations omitted for brevity

}

public class TypeDefinition

{

public TypeDefinition(

String typeName,

String[] ancestorTypeNames,

String className);

... // operations omitted for brevity

}

public class TypesAndObjects

{

private TypeDefinition[] typeDefinitions;

private HashMap objects;

public void validateConfiguration(

Config4JMS config4jms,

String scope) throws Config4JMSException;

... // other operations omitted for brevity

}

operation also caches the values of con�guration variables in in-
stance variables.

� The createJMSObject() operation creates the JMS object and sets
its properties, according to the (validated and cached) information
in the con�guration scope.

� The getObject() operation returns a reference to the newly created
JMS object.

102 CHAPTER 11. ARCHITECTURE OF CONFIG4JMS

11.3.2 The TypeDefinition Class

The Config4JMS class is not hard-coded with knowledge of the numerous
subclass of Info. Instead, Config4JMS uses Java re�ection to create and
manipulate Info objects from metadata.2 This metadata is provided by
instances of the TypeDefinition class (see Figure 11.1). I will illustrate
this with three examples.

The TypeDefinition object below indicates that a Session (for exam-
ple, a Session.prodSession scope) should be processed by creating an
instance of the org.config4jms.portable.SessionInfo class. The null

value indicates that Session is a base type, that is, it does not have any
ancestor types:

new TypeDefinition("Session", null,

"org.config4jms.portable.SessionInfo");

This next TypeDefinition object indicates that Topic is a subtype of
Destination, and an instance of Topic should be processed by creating
an instance of the org.config4jms.portable.TopicInfo class:

new TypeDefinition("Topic", new String[]{"Destination"},

"org.config4jms.portable.TopicInfo");

This �nal example indicates that Destination has neither ancestor types
nor an implementation class. In e�ect, it is an abstract base type:

new TypeDefinition("Destination", null, null);

The abstract nature of Destination means you cannot have Destination
sub-scopes in a Con�g4JMS con�guration �le. However, an applica-
tion can invoke, say, getDestination("chatTopic") on a Config4JMS ob-
ject because Topic is a subtype of Destination. Likewise, invoking
listDestinationNames() would return "chatTopic" among its results.

11.3.3 The TypesAndObjects Class

The TypesAndObjects class (see Figure 11.1) contains two instance vari-
ables:

2Readers not familiar with Java re�ection can �nd an informative overview in
a free training course: www.ciaranmchale.com/training-courses.html#training-java-
re�ection. A more detailed discussion of Java re�ection can be found in an excellent
book [FF05] upon which that training course is based.

11.4. ALGORITHMS USED IN CONFIG4JMS 103

private TypeDefinition[] typeDefinitions;

private HashMap objects;

The typeDefinitions array holds metadata for all JMS data types.
The org.config4jms.portable.PortableTypesAndObjects class creates an
array of TypeDefinition for all the standardised JMS types. Conversely,
the org.config4jms.sonicmq.SonicMQTypesAndObjects class creates an
array of TypeDefinition for all the standardised JMS types plus the
SonicMQ-proprietary types.

The objects variable is a HashMap that provides a �exible way to
retrieve an Info object. For example, a TopicInfo object created from
the Topic.chatTopic scope is registered in the HashMap via three keys:
"chatTopic", "Topic,chatTopic" and "Destination,chatTopic".

� Storing the Info object under the name "chatTopic" provides an
easy way for Con�g4JMS to check (and complain) if a name has
been reused for di�erent JMS types. For example, the scopes
Topic.foo and Session.foo would result in an exception being
thrown due to the reuse of the name foo.

� Storing the Info object under both "Destination,chatTopic" and
"Topic,chatTopic" makes it possible for an application to obtain
"chatTopic" in the results from calling listDestinationNames() or
listTopicNames().

The TypesAndObjects class provides a lot of operations that ma-
nipulate its instance variables. In fact, a lot of Con�g4JMS function-
ality is implemented by having the Config4JMS class delegate to the
TypesAndObjects class.

11.4 Algorithms Used in Con�g4JMS

With the knowledge of important infrastructure classes provided in Sec-
tion 11.3, the implementation of Con�g4JMS is easy to understand.

11.4.1 Initialisation

Pseudocode for the initialisation of a Config4JMS object is shown in Fig-
ure 11.2.

The create() operation creates an empty Configuration object and
copies all the name=value pairs from the cfgPresets variable into it.

104 CHAPTER 11. ARCHITECTURE OF CONFIG4JMS

Figure 11.2: Pseudocode implementation of Config4JMS.create()

package org.config4jms;

public abstract class Config4JMS

{

public static Config4JMS create(

String cfgSource,

String scope,

Map cfgPresets) throws Config4JMSException

{

//--------

// Parse the configuration file and retrieve the name of the

// concrete subclass that we should create.

//--------

cfg = Configuration.create();

... // populate cfg with name=value pairs from cfgSource

cfg.parse(cfgSource);

className = cfg.lookupString(scope, "config4jmsClass",

"org.config4jms.portable.Config4JMS");

//--------

// Use reflection to create an instance of the specified class

//--------

c = Class.forName(className);

cons = c.getConstructor(new Class[]

Configuration.class, String.class);

return (Config4JMS)cons.newInstance(new Object[]cfg, scope);

}

protected Config4JMS(

Configuration cfg,

String scope,

TypesAndObjects typesAndObjects) throws Config4JMSException

{

this.cfg = cfg;

this.scope = scope;

this.typesAndObjects = typesAndObjects;

naming = null;

jndiEnvironment = cfg.lookup(scope, "jndiEnvironment",

new String[0]);

typesAndObjects.validateConfiguration(this, scope);

}

...

}

11.4. ALGORITHMS USED IN CONFIG4JMS 105

Then the con�guration �le is parsed, and lookupString() is invoked to
get the value of the config4jmsClass variable. Finally, Java's re�ection
capabilities are used to create an instance of the speci�ed class, which
must be a subclass of org.config4jms.Config4JMS.

The constructor of the subclass just invokes its parent class's con-
structor, passing a TypesAndObjects parameter that provides the meta-
data necessary to create JMS-based objects via re�ection.

The base class constructor, which is shown in Figure 11.2, initialises
instance variables and then performs schema validation of the con�gu-
ration �le by invoking validateConfiguration() on its typesAndObjects
object.

11.4.2 Schema Validation

TypesAndObjects.validateConfiguration() performs schema validation
in three steps.

Step 1. A schema for the top-level of the con�guration scope is created.
This schema is of the form:

String schema = new String[] {

"config4jmsClass = string",

"jndiEnvironment = table[name,string, value,string]",

"ConnectionFactory = scope",

"Connection = scope",

"Session = scope",

...

};

Only the �rst two entries (config4jmsClass and jndiEnvironment)
in the schema are hard-coded. The remaining schema entries are
obtained by iterating over the typeDefinitions array, which holds
metadata for all JMS data types. For each non-abstract data type
in that array, a string of the form "<type-name> = scope" is added
to the schema.

Once that schema de�nition has been created, it is used to validate
the top-level con�guration scope:

sv = new SchemaValidator(schema);

sv.validate(cfg, scope, "", false, Configuration.CFG_SCOPE_AND_VARS);

The false parameter indicates that the validation should not re-
curse into sub-scopes.

106 CHAPTER 11. ARCHITECTURE OF CONFIG4JMS

Step 2. Each sub-scope corresponding to a JMS data type can contain
nested scopes but not variables. For example, a Session scope can
contain nested scopes (one for each session object), but it cannot
contain any variables. The code below performs this validation
check.

schema = new String[0];

sv = new SchemaValidator(schema);

for (i = 0; i < typeDefinitions.length; i++) {

typeDef = typeDefinitions[i];

if (typeDef.getIsAbstract()) { continue; }

typeName = typeDef.getTypeName();

if (cfg.type(scope, typeName) == Configuration.CFG_NO_VALUE) {

continue;

}

sv.validate(cfg, scope, typeName, false,

Configuration.CFG_VARIABLES);

}

First an empty schema (that is, an array containing zero strings) is
created. Then, when iterating over the typeDefinitions array, ab-
stract types are ignored (because they cannot have a scope in the
con�guration �le). A concrete type is also ignored if cfg.type()

indicates there is no scope matching the type's name in the con-
�guration �le. If there is a scope for the type, then it is validated,
but only for the variables it might contain.

Step 3. Nested for-loops are used to iterate over every type.name con-
�guration sub-scope (for example, ConnectionFactory.factory1,
Connection.connection1, Topic.chatTopic, Session.prodSession,
Session.consSession and so on). For each such sub-scope, Java's
re�ection capabilities are used to create an instance of a <type>Info
object for that scope. For example, a TopicInfo object is cre-
ated for the Topic.chatTopic scope. Each <type>Info object is
registered in the objects map multiple times (as discussed in Sec-
tion 11.3.3 on page 102). Then, validateConfiguration() is in-
voked on the newly created <type>Info object so the object can val-
idate (and cache in instance variables) the con�guration variables
in its own scope. The schema validation code within a <type>Info

class is straightforward, as you will be able to see if you example
the source code of any those classes.

11.4. ALGORITHMS USED IN CONFIG4JMS 107

The three-step algorithm could be simpli�ed by combining steps 1 and 2
into a single step, as I now discuss.

Recall that step 1 creates the schema de�nition by iterating over
the typeDefinitions array and, for each non-abstract data type in that
array, adding a string of the form "<type-name> = scope" to the schema.
That algorithm could be modi�ed so that another string, this one of the
form "@ignoreScopesIn <type-name>", is also added to the schema. The
resulting schema would be of the form:

String schema = new String[] {

"config4jmsClass = string",

"jndiEnvironment = table[name,string, value,string]",

"ConnectionFactory = scope",

"@ignoreScopesIn ConnectionFactory",

"Connection = scope",

"@ignoreScopesIn Connection",

"Session = scope",

"@ignoreScopesIn Session",

...

};

Once that schema de�nition has been created, it would then be used
to perform a recursive schema validation of the top-level con�guration
scope:

sv = new SchemaValidator(schema);

sv.validate(cfg, scope, "", true, Configuration.CFG_SCOPE_AND_VARS);

The true parameter indicates that the validation does recurse into sub-
scopes.

Those changes to step 1 of the algorithm are quite trivial (they require
adding one line of new code and modifying another line of existing code),
and they eliminate the need for step 2 (which accounts for 12 lines of
code). Some readers may be wondering why Con�g4JMS does not use
the simpler algorithm that I just described. There are two reasons for
this:

� I developed Con�g4JMS before I added ignore rules to the schema
language. By the time I had introduced support for ignore rules, I
had left my employer and, in doing so, lost access to the license for
the JMS product I had used to develop Con�g4JMS. I could easily
make the two-line change to simplify the algorithm, but I would
not be able to test the changes. I decided to not ship Con�g4JMS
in an untested state.

108 CHAPTER 11. ARCHITECTURE OF CONFIG4JMS

� I think the discussion of the original and simpli�ed algorithms is
bene�cial for readers because it illustrates how ignore rules can
shorten and simplify schema validation code.

11.4.3 The createJMSObjects() Operation

Config4JMS.createJMSObjects() delegates to an identically-named oper-
ation on the TypesAndObjects class. That operation iterates over all
the <type>Info> objects that had been created during step 3 of the
schema validation algorithm, and invokes createJMSObject() on each
object. The only complication is that JMS objects have to be created
in a particular order. For example, a ConnectionFactory object must be
created before it can be used to create a Connection object. Likewise, a
Connection object must be created before creating Session objects.

The order-of-creation guarantee is provided in a simple way. When
an array of TypeDefinition objects is being created (see Section 11.3.3 on
page 102), the order of elements in the array speci�es the order in which
objects of those types will be created. That enables createJMSObjects()
to ensure that JMS objects are created in the required order.

11.5 Comparison with Spring

The purpose of Con�g4JMS overlaps a bit with that of the Spring frame-
work. In particular, both use information in a con�guration �le to create
Java objects. This overlap is bound to invite comparisons between the
two projects. In reality, the two projects are more di�erent than alike, so
a comparison of them would be akin to comparing apples and oranges.

One obvious di�erence between Spring and Con�g4JMS is the con�g-
uration syntax used: Spring uses XML while Con�g4JMS uses Con�g4*.
However, that di�erence is relatively unimportant.

A much more signi�cant di�erence�and what I consider to be the
primary di�erence�is that Spring can create Java objects of arbitrary
types, while Con�g4JMS is restricted to creating only JMS objects.
Many other di�erences between Spring and Con�g4JMS can be traced
back to that primary di�erence. For example:

� The general-purpose nature of Spring requires a bean de�nition to
specify the fully-scoped (and hence verbose) name of its class. In
contrast, the specialised nature of Con�g4JMS means it can get
away with specifying the more concise local name of a class.

11.6. FUTURE MAINTENANCE 109

� The specialised nature of Con�g4JMS means that it can be hard-
coded to automatically perform data-type conversion. For exam-
ple, Con�g4JMS uses lookupDurationMilliseconds() of Con�g4*
when setting the JMSExpiration or timeToLive properties of JMS
objects. The general-purpose nature of Spring prevents the use of
such techniques.

� The specialised nature of Con�g4JMS means it is a relatively small
project: just a few thousand lines of code that compiles to an 80KB
jar �le. There is another 106KB for the Con�g4J jar �le upon
which Con�g4JMS depends, thus making for a total of 186KB in
jar �les. Spring o�ers signi�cantly more functionality than Con-
�g4JMS, and this is re�ected in it being approximately one hun-
dred times bigger.

11.6 Future Maintenance

My inspiration for developing Con�g4JMS came about in early 2010,
when my manager asked me to learn JMS. I began by reading the JMS
speci�cation and some product manuals. Unfortunately, the problems
discussed in Section 9.4 on page 77 made learning JMS more di�cult
than I had expected, so I decided to write Con�g4JMS. I �gured that:
(1) implementing this class library would help me to learn JMS; and
(2) the resulting class library might actually be useful. I was right on
both counts. Development of Con�g4JMS took about two weeks of hard
but enjoyable work.

Unfortunately, a few few months after developing Con�g4JMS, I was
laid o� during a restructuring of the company I worked for. My new
career plans mean it is unlikely that I will be working much with JMS in
the future, so I will have little motivation to maintain and extend Con-
�g4JMS. If any readers would like take over maintenance of Con�g4JMS,
then that would be great. Please let me know if you are interested in
taking on this responsibility.

11.7 Summary

In this chapter, I have provided an overview of the architecture of Con-
�g4JMS. The �lots of power from a small class library� feel of Con�g4JMS
is due to a synergy between its use of Con�g4J and Java's re�ection

110 CHAPTER 11. ARCHITECTURE OF CONFIG4JMS

capabilities. This synergy enables Con�g4JMS to provide a useful sim-
pli�cation and portability wrapper around JMS with a relatively small
amount of code.

The Con�g4J schema language is not powerful enough to validate an
entire Con�g4JMS �le in one go. However, Con�g4JMS works around
this in a straightforward manner: as I discussed in Section 11.4.2 on
page 105, it breaks up schema validation into a sequence of smaller steps,
each of which is within the capabilities of the schema language.

Bibliography

[FF05] Ira R. Forman and Nate Forman. Java Re�ection in Action.
Manning, 2005.

[Mil56] George A. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological Review, 101(2):343�352, 1956.
A summary of this paper can be found in Wikipedia:
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,
_Plus_or_Minus_Two. That Wikipedia article also contains
links to HTML and PDF versions of the paper.

111

