
Config4
Maintenance Guide

Version 1.2 30 September 2021

Ciaran McHale

www.con�g4star.org

Availability and Copyright

Availability

The Con�g4* software and its documentation (including this manual)
are available from www.con�g4star.org. The manuals are available in
several formats:

� HTML, for online browsing.

� PDF (with hyper links) formatted for A5 paper, for on-screen read-
ing.

� PDF (without hyper links) formatted 2-up for A4 paper, for print-
ing.

Copyright

Copyright© 2011�2021 Ciaran McHale (www.CiaranMcHale.com).

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation �les (the �Software�),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

� The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

� THE SOFTWARE IS PROVIDED �AS IS�, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTIONWITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Contents

1 Introduction 1

1.1 The Purpose of the Manual 1
1.2 Structure of this Manual 1

I Architecture of Con�g4* 3

2 History 5

2.1 Introduction . 5
2.2 Motivation . 5
2.3 Development . 6
2.4 Choosing a Name . 7
2.5 Intertwining Development with Writing of Documentation 7

3 Architectural Overview 9

3.1 Introduction . 9
3.2 Hiding Implementation Details 9
3.3 Use of Multiple Hash Tables 9
3.4 Why Creation and Parsing are Separate Steps 11
3.5 Limitations . 12

3.5.1 Number of uid- Entries 12
3.5.2 Lack of File name and Line Number Information . 13
3.5.3 Information lost with round-trip parse() and dump() 15

3.6 The Multi-step Build Process 17
3.7 Features Implemented with Delegation 18

3.7.1 Fallback Con�guration 18
3.7.2 Security Policy . 19

3.8 Thread safety . 20

i

4 Portability 21

4.1 Introduction . 21

4.2 Compatibility with Old Compilers 21

4.3 Platform-speci�c Issues 22

5 Coding Conventions 23

5.1 Introduction . 23

5.2 Naming Conventions . 23

5.3 Use of a Single Namespace/Package 24

5.4 Indentation and Spacing 25

6 Parsers and Lexical Analysers 27

6.1 Introduction . 27

6.2 Avoidance of Parser Generators 27

6.3 Lack of Error Recovery . 28

6.4 A Hierarchy of Lexical Analysers 28

6.5 Parsing @if-then-@else statements 29

6.5.1 A Subtle Problem 29

6.5.2 An Imperfect Approach to Tackling the Problem . 31

II Areas for Improvement 33

7 Missing Components 35

7.1 Introduction . 35

7.2 Cross-platform Build System 35

7.3 Javadoc and Doxygen Documentation 35

7.4 Installation Packages . 36

7.5 Regression Test Suite . 36

8 Rethinking the Architecture 37

8.1 Introduction . 37

8.2 Parsing @if-then-@else statements 37

8.3 Location Information in Error Messages 38

8.4 Uid- entries . 38

8.5 Alternative Schema Validators 39

8.6 Drawback of an Abstract Base Class 39

ii

9 Other Programming Languages 43

9.1 Introduction . 43
9.2 Scripting Languages . 44
9.3 Advice for Implementers 44

10 Internationalisation 47

10.1 Introduction . 47
10.2 Unicode Concepts and Terminology 47

10.2.1 Planes and Surrogate Pairs 48
10.2.2 UCS-2, UTF-8, UTF-16 and UTF-32 48
10.2.3 Merits of Di�erent Encodings 49
10.2.4 Transcoding . 51

10.3 Unicode Support in Java 51
10.4 Unicode Support in C and C++ 53

10.4.1 Limitations in the Standard C Library 53
10.4.2 Use of Third-party Unicode Libraries 55
10.4.3 UTF-8, UTF-16 or UTF-32? 56
10.4.4 Approach Currently Used in Con�g4Cpp 56

11 Localisation 59

11.1 Introduction . 59
11.2 One Possible Approach for Localisation 59

Bibliography 61

iii iv

Chapter 1

Introduction

1.1 The Purpose of the Manual

This manual is intended primarily for people who want to modify or
maintain the source code of Con�g4*. For example, if you want to inves-
tigate and �x a bug, add new new functionality, or implement Con�g4*
in another programming language, then you should consider reading this
manual.

Even if you are not interested in modifying or maintaining Con�g4*,
you still might �nd this manual interesting. For example, perhaps you
have wondered about the motivation behind a particular aspect of the
Con�g4* API. The information provided in this manual might satisfy
such curiosity.

1.2 Structure of this Manual

The chapters in this manual are grouped into two parts.
Part I provides information on the architecture of Con�g4*. The

chapters in Part I explain not just how Con�g4* is designed, but also
why it was designed that way. If you spend, say, one hour, reading Part I
of this manual, then that might save you several days of e�ort in getting
up to speed with the source-code of Con�g4*.

Part II discusses some of the �rough edges� that exist in Con�g4*. If
you would like to contribute to Con�g4*, then reading Part II may give
you some inspiration on where you could make a good impact.

1

2 CHAPTER 1. INTRODUCTION

Part I

Architecture of Con�g4*

3

Chapter 2

History

2.1 Introduction

In this chapter, I provide a brief history of the gestation of Con�g4*,
from its initial conception to its �rst public release 14 years later.

2.2 Motivation

In 1996, I did a �ve-month consultancy assignment in which I helped a
customer design and implement some client-server applications. When
we started the implementation phase, we realised that the applications
would greatly bene�t from having a runtime con�guration �le. Unfor-
tunately, we did not have a con�guration parser to hand, and a quick
Internet search did not turn up any suitable ones.

I remember thinking at the time that there must be countless de-
velopers around the world in the same position: they needed to write
a con�guration parser for a project, but deadline pressure meant they
could devote no more than, say, a day to writing it, so the resulting parser
would be undocumented, lacking in useful features, possibly buggy, and
unlikely to be reused in future projects. The re-invention of mediocre
con�guration parsers by countless developers around the world struck
me as being a massive waste of time. I decided that, once the current
consultancy assignment was �nished, I would spend a few weeks, possi-
bly a month, of my spare time writing a good quality C++ con�guration
parser.

5

6 CHAPTER 2. HISTORY

At the time, I was employed in the professional services depart-
ment1 of a software vendor, and my employment contract contained
a clause stating that whatever software I wrote�even outside o�ce
hours�belonged to my employer. At the time, my employer developed
proprietary software exclusively (it would be about ten years before my
employer started experimenting with developing open-source software),
so I knew I would not be able to release my con�guration parser as
open-source software. This meant that, unfortunately, the wider world
would not be able to bene�t from my con�guration parser. But at least
my colleagues and I would be able to use it in our future consultancy
assignments.

2.3 Development

I implemented the con�guration parser. As far as I can recall, it provided
only name=value statements (the value could be a string or a list), the
concatenation operator ("+") and scopes. It was certainly a very lim-
ited subset of what Con�g4* contains today. One or two years later,
a software developer in another department told me that he needed a
con�guration parser for a new product that was being developed, and he
asked if he could use my parser. I gave him a snapshot of the source code.
He modi�ed the code to remove the concatenation operator (because it
was unnecessary for his needs) and added some new features (which are
outside the scope of this discussion). That modi�ed con�guration parser
made its way into several new products. I mention that in case any
readers are familiar with the Orbix or Artix products from IONA Tech-
nologies (since acquired by Progress Software and later still by Micro
Focus) and recognise some similarities between their con�guration �le
syntax and that of Con�g4*.

As Eric Raymond famously wrote in The Cathedral and the Bazaar
[Ray99]:

Every good work of software starts by scratching a devel-
oper's personal itch.

1For any readers not familiar with the term, professional services basically
means �consultancy and training�. It is not to be confused with personal ser-

vices (a euphemism for prostitution), although the hourly rates are similar. Dis-
turbingly, there appear to be many other similarities between the two professions:
www.thatwasfunny.com/di�erences-between-consulting-and-prostitution/53.

2.4. CHOOSING A NAME 7

Once the con�guration parser was mature enough to scratch my itch, I
stopped work on it and went back to other things. But every few years
I encountered a slightly more stubborn itch that my parser could not
scratch. This resulted in me occasionally adding new functionality to the
parser. Sometimes, I discovered that the parser's architecture contained
a signi�cant limitation or misfeature, so I redesigned it several times over
the years.

Eventually, my employer started to experiment with developing open-
source software products. Soon after that, my employer agreed to trans-
fer copyright ownership of the con�guration parser to me, so that I could
release it under an open-source license. However, I decided to add a few
more features to the C++ implementation, write a Java version, and
write comprehensive documentation before releasing it. I held o� writ-
ing the Java version until I (prematurely) thought the C++ version was
feature complete. This was to reduce the amount of work involved in
maintaining two parallel versions.

2.4 Choosing a Name

I had struggled for many years to think of a good name for the con�gura-
tion parser. However, one day a colleague mentioned the log4j project2

in a conversation; I realised that the name Con�g4J would be good for a
Java-based parser, and this name could be adapted to provide Con�g4C,
Con�g4Cpp, Con�g4Ada and so on. Hence, the generic name: Con�g4*,
with the asterisk acting as a wildcard to denote the names of arbitrary
programming languages.

2.5 Intertwining Development with Writing
of Documentation

Years ago, I discovered a time-consuming but e�ective way to improve
the quality of any software I was developing: write documentation for it.
Writing documentation forces me to explain the various features of the
software. If I �nd it di�cult to explain a particular feature, then that
makes me realise there is something wrong with the feature: perhaps it
is badly designed or needlessly complex. This leads me to work in an
iterative manner. I write the initial version of a piece of software. Then

2http://logging.apache.org/log4j/

8 CHAPTER 2. HISTORY

when I attempt to write documentation, I invariably become aware of
problems in my software's architecture. Then I �x the problems in the
software before I continue writing the documentation. I tend to cycle
several times�between writing documentation and �xing/enhancing the
software�before the software becomes feature-rich, stable, and easy to
use. This approach has served me well in my own personal projects that
don't have deadline pressure. I don't know if such an approach would
work in an environment where time-to-market is critical.

With the bene�t of hindsight, I can see that at least half of the fea-
tures in Con�g4* have come about because of my attempts to write
documentation. So, if you think, �Ciaran did a great job designing Con-
�g4*�, and you wonder what is my secret for good design, the answer
is that I do a mediocre design initially, and then slowly improve it by
trying to document it. Of course, I never realise at the time that my
initial design is mediocre. I always naïvely think that my design is great.
It is only when the design has matured a lot, that I can look back and
think, �Wow, my initial design was �awed in so many ways�.

Chapter 3

Architectural Overview

3.1 Introduction

In this chapter, I explain the main architectural decisions that I made
in Con�g4*.

3.2 Hiding Implementation Details

The public API of Con�g4* is de�ned in the Configuration class. This
is an abstract base class containing very little code. This class provides a
static create() operation that creates an instance of a concrete subclass.
In this way, the implementation details of Con�g4* are kept separate
from its public API.

The concrete subclass is called ConfigurationImpl. Its most im-
portant instance variable is a hash table. When a ConfigurationImpl

object is created, its hash table is empty initially. The hash table
can then be populated by calling insertString(), insertList() and
ensureScopeExists() directly. Alternatively (and more commonly), you
can call parse(), which, internally, calls those update-style operations.

3.3 Use of Multiple Hash Tables

I know of two potential ways in which a con�guration parser might use a
hash table to store name=value pairs. I use the con�guration �le below
to illustrate the two approaches:

9

10 CHAPTER 3. ARCHITECTURAL OVERVIEW

foo = "a string";

bar = ["a list", "of", "strings"];

acme {

widget = "another value";

}

The �rst approach is to use a single hash table to store all the entries.
The entries in this hash table can be represented as follows:

foo → (STRING, �a string�)
bar → (LIST, ["a list", �of�, �string�])
acme → (SCOPE, null)
acme.widget → (STRING, �another string�)

The above notation indicates that each entry in the hash table is a
name → tuple mapping, in which the tuple contains two �elds: a type
(STRING, LIST or SCOPE) and a value (if appropriate).

The other approach is to use a separate hash table for each scope.
With this second approach, the hash table for the root scope can be
represented as follows:

foo → (STRING, �a string�)
bar → (LIST, ["a list", �of�, �string�])
acme → (SCOPE, <another-hash-table>)

The hash table for the acme scope contains:

widget → (STRING, �another string�)

When I wrote my �rst con�guration parser, I used the �rst approach,
that is, a monolithic hash table. I did this for three reasons. First, it
was simpler to implement. Second, it was slightly more memory-e�cient.
Finally, it meant that the implementation of a lookup<Type>() operation
required a lookup on just one hash table. In contrast, the �separate hash
table for each scope� approach can require multiple lookups on hash
tables. For example, looking up the value of "acme.widget" requires two
invocations of lookup():

value = rootScopeOfHashTable.lookup("acme).lookup("widget");

Several years later, I added the @copyFrom statement to my con�guration
parser and, unfortunately, this introduced a severe performance problem.
When using the �monolithic hash table� approach, the implementation
of @copyFrom has to iterate over the entire contents of the hash table to
�nd the relevant entries that should be copied. The worst-case scenario
for this is when a con�guration �le has a scope called, say, defaults, and
many other scopes, each of which contains the following statement:

3.4. WHY CREATION AND PARSING ARE SEPARATE STEPS 11

@copyFrom "defaults";

In such a scenario, parsing the con�guration �le takes O(N2) time, where
N is the number of entries in the con�guration �le. That O(N2) per-
formance problem disappears if, instead, a separate hash table is used
for each scope. For that reason, I redesigned Con�g4* to use a separate
hash table for each scope.

The hash table used by the ConfigurationImpl class is implemented
by the ConfigScope class. The (type, value) tuple used in the above
discussion of hash tables is implemented by the ConfigItem class.

3.4 Why Creation and Parsing are Separate
Steps

With Con�g4*, parsing of a con�guration �le is kept separate from the
(initially empty) construction of the Configuration object. For example,
in C++, you write:

cfg = Configuration::create();

cfg->parse("foo.cfg");

Things were not always that way. When I wrote my �rst con�guration
parser, parsing of a con�guration �le was performed in the constructor.
This resulted in slightly shorter application code:

cfg = Configuration::create("foo.cfg");

Unfortunately, performing parsing in the constructor turned out to
be a source of memory leaks. This is because the parser might encounter
an error in the con�guration �le and, as a result, throw an exception.
Throwing an exception from (the parser called from within) the construc-
tor means that the object's destructor is not called, so heap-allocated
instance variables become memory leaks. In theory, all I had to do was
write the constructor as shown below:

ConfigurationImpl::ConfigurationImpl(const char * fileName)

{

... // allocate memory for instance variables

try {

parse(fileName);

} catch(const ConfigurationException & ex) {

... // free memory of instance variables

throw; // re-throw the exception

}

}

12 CHAPTER 3. ARCHITECTURAL OVERVIEW

However, on several occasions, as the project matured, memory leaks
crept in due to me adding new heap-allocated instance variables but
forgetting to free them in the above catch clause. Eventually, I grew tired
of that source of recurring memory leaks, and I decided to prevent future
re-occurrences by keeping parsing separate from object construction.

Several years after I made that change, I discovered two extra bene�ts
of keeping parsing separate from construction. First, it makes it possible
to preset con�guration variables. Second, it makes it possible to set a
security policy before parsing a con�guration �le.

3.5 Limitations

There are very few arbitrary limitations in the implementation of Con-
�g4*. For example:

� Aside from available RAM, there is no arbitrary limit on the size
of a con�guration �le, or the length of lines within a con�guration
�le.

� There is no arbitrary limit on the length of an identi�er (that is,
the name of a scope or variable), on the length of a string value,
or on the maximum number of strings in a list.

� There is no arbitrary limit on the maximum number of nested
@include statements. (However, operating systems typically place
a limit on the number of open �le descriptors within a process;
that will limit the number of nested @include statements.)

� There is no arbitrary limit on the number of scopes or how deeply
they can be nested. There is no arbitrary limit on the number of
entries in a scope. The scope's hash table will resize itself when it
starts to �ll up.

I think you get the idea: arbitrary limitations are not common in Con-
�g4*. Having said that, Con�g4* does have some limitations, as I now
discuss.

3.5.1 Number of uid- Entries

There can be no more than 109 uid- entries in a con�guration �le. That
is an arbitrary limitation, albeit a large one. That limitation arises
because Con�g4* uses a 32-bit integer to store the uid- counter, and the

3.5. LIMITATIONS 13

maximum value of such an integer is 231 − 1 = 2, 147, 483, 647. That
value is a 10-digit number. I decided to round down the maximum value
of the uid- counter to 999, 999, 999 so that the expanded form of an uid-

identi�er contains nine digits instead of ten.
How likely is it that a con�guration �le will exceed the limit on uid-

entries? I don't think many people will be creating big enough con-
�guration �les to have to worry about exceeding this limit within the
next few years (I'm writing this statement in 2011). But the software
and databases that underpin an Internet search engine, such as Google,
might. If you work for such a company and wish to increase this limit,
then you should do the following. Edit the UidIdentifierProcessor

class, change the declaration of the instance variable from being a 32-bit
integer to being a 64-bit one, and modify the code so that when the value
of this instance variable is formatted as a string, the string contains more
than nine digits.

3.5.2 Lack of File name and Line Number Informa-
tion

Consider the following scenario involving two con�guration �les: foo.cfg
and bar.cfg. The foo.cfg �le contains the following:

@include "bar.cfg";

... # define some configuration variables

The bar.cfg �le contains the following:

x = "2" # missing semicolon

y = "tru"; # misspelling of "true"

Now let's consider what happens if we run a program that contains the
following code:

cfg = Configuration.create();

try {

cfg.parse("foo.cfg");

boolean myBool = cfg.lookupBoolean("", "y");

} catch(ConfigurationException ex) {

System.out.println(ex.getMessage());

}

When we run the program, the call to parse() fails because of a syntax
error, and the following message is printed:

14 CHAPTER 3. ARCHITECTURAL OVERVIEW

bar.cfg, line 2: expecting ’;’ or ’+’ near ’y’

(included from foo.cfg, line 1)

The error message is very informative. Not only does it correctly report
the missing semicolon, it also speci�es the location of that problem:
line 2 of �le bar.cfg, which was included from line 1 of foo.cfg.

Let's assume we insert the missing semicolon and run the program
again. Now, parse() succeeds, but the call to lookupBoolean() fails, and
the following message is printed:

foo.cfg: bad boolean value (’tru’) specified for ’y’; should be one of:

’false’, ’true’

That error message is less informative that the previous one. It correctly
describes the problem, but it does not accurately specify the �le name
and line number of the problematic con�guration variable. Instead, it
just assumes (inaccurately, in this case) that the problematic variable is
de�ned somewhere in foo.cfg rather than in an included �le.

The lack of accurate location information in this second error message
is due to that information not being recorded in Con�g4*'s internal hash
tables. That information is not recorded because of a combination of my
laziness and my concern for e�cient memory use, as I now explain.

When the Con�g4* parser encounters a name=value statement or the
opening of a scope, it enters information into the internal hash tables by
calling one of the following operations: insertString(), insertList()
or ensureScopeExists(). The following discussion applies to all those
operations, so, for conciseness, I will discuss just insertString().

The �rst con�guration parser I implemented�the original ances-
tor of Con�g4*�did not have @include or @copyFrom statements. The
insertString() operation took an extra parameter that indicated the
line number at which the con�guration variable was de�ned:

void insertString(String scope, String name, String value, int lineNum);

That line number was recorded in the hash table entry for the variable.
If an operation, say, lookupBoolean(), could not translate a variable's
value into the appropriate type, then the text message in the exception
thrown could specify the line number (obtained from the entry in the
hash table) and the �le name (obtained by calling cfg.fileName()) of the
problematic variable. This approach worked well, and it had minimal
memory overhead: just a 4-byte integer (to store the line number) for
each entry in a hash table.

Several years later, I added the @include statement. I realised that
if error messages were to specify accurate location information, then it

3.5. LIMITATIONS 15

would no longer be su�cient to pass a line number to insertString().
That operation would have to be modi�ed to take a parameter that spec-
i�ed a list of (�leName, lineNumber) tuples, as shown in the following
pseudocode:

void insertString(String scope, String name, String value,

List[(fileName, lineNum)] locationInformation);

That list of tuples could be stored in the hash table entry for a variable.
Then an error message produced by, say, lookupBoolean() could indi-
cate the �le name and line number of the problematic variable, plus the
path, if any, that traces the @include statements from the main con�g-
uration �le to the �le that contains the problematic variable. (Ideally,
the path would trace not just @include statements, but also @copyFrom

statements.)
Implementing that enhancement could result in a signi�cant memory

overhead. For example, let's assume there are 100 variables de�ned in
bar.cfg, which is included from foo.cfg. Would the enhancement result
in there being 100 copies of the string "bar.cfg" and another 100 copies
of "foo.cfg"�separate copies for each entry in the hash table? Avoiding
such redundant copies would require the implementation of a pool of
unique strings, which would add complexity to the implementation of
Con�g4*.

Would such memory overhead and/or complexity be a worthwhile
investment to obtain more informative error messages? I don't know. So
far, I have found it straightforward to search through a �le (and included
�les, if any) in a text editor to �nd a problematic variable. But then, I
have been dealing mainly with con�guration �les that contain only a few
hundred or few thousands lines of text. Perhaps, in a few years time,
somebody will be working with con�guration �les that contain millions
of lines of text, a complex interaction of deeply nested and re-opened
scopes, all compounded with @include and @copyFrom statements. In
such a scenario, accurate location information in error messages might
improve ergonomics signi�cantly.

3.5.3 Information lost with round-trip parse() and
dump()

If you parse() a con�guration �le and dump() it back out again, then
you do not get back the full contents of the original con�guration �le.

As �rst sight, this might appear to be a limitation of the dump()
operation. However, that view is inaccurate. To better understand the

16 CHAPTER 3. ARCHITECTURAL OVERVIEW

issues involved, consider a con�guration �le that contains the following
statement:

log_dir = getenv("FOO_HOME") + "/logs/" + exec("hostname");

The Con�g4* parser evaluates the expression and stores the result in the
hash table for the con�guration scope. For example, if FOO_HOME has the
value "/opt/foo" and hostname returns "host1", then the hash table will
contain the following entry:

log_dir → (STRING, �/opt/foo/logs/host1�)

The dump() operation simply dumps the contents of the hash table, and
thus produces:

log_dir = "/opt/foo/logs/host1";

So, the limitation is not actually with the dump() operation, since it
is faithfully reproducing the contents of the hash table. Instead, the
limitation is with the parser and hash table representation, because they
record a processed (rather than the original) version of what was in the
input con�guration �le.

You might think this limitation would be easy to overcome: just
have the hash table store the original expression rather than the result
of evaluating the expression. However, such an approach would su�er
from two signi�cant problems.

The �rst problem is an increased performance overhead. This is
because the overhead of evaluating the expression would not be incurred
exactly once, when parsing the input �le. Instead, the overhead would
be incurred every time a lookup<Type>() operation is invoked (which
might be multiple times in an application).

The second problem is that the internal architecture of Con�g4*
would have to be redesigned completely to enable dump() to reproduce
the input con�guration �le exactly. In particular, something more com-
plex than a hash table would be required to store the parsed information.
This is because:

� A hash table does not preserve the order in which entries were
added to it, but such an order-preservation guarantee would be
required for dump() to reproduce the input �le accurately.

� The parser discards comments when parsing the input �le. These
would have to be preserved in the internal representation for dump()
to be able to reproduce the input �le accurately.

3.6. THE MULTI-STEP BUILD PROCESS 17

In addition, it is di�cult to see how an e�cient internal representation
might preserve commands such as @include, @copyFrom, @remove, @if-
then-@else, and conditional assignment ("?=") statements rather than
just the name=value pairs resulting from executing those commands.

In summary, it would require a signi�cant amount of rework to the
architecture of Con�g4* to be able to implement a dump() operation that
could reproduce the input con�guration �le accurately. In my opinion,
the bene�ts would not justify the amount of work involved.

The preceding discussion invites a question: Why did I implement a
dump() operation that reproduces the input con�guration �le so inaccu-
rately? The answer is that my original intention in implementing dump()

was to provide a debugging tool: the output of dump() helped me to
check that I had implemented the hash table-based internal representa-
tion correctly. It was only later that I realised dump() might be useful for
other purposes too, such as converting, say, an XML �le into Con�g4*
format, or storing the user preferences of a GUI-based application.

3.6 The Multi-step Build Process

Some software projects have a straightforward build system: compile
all the source-code �les, and then combine them to form a library, ex-
ecutable or jar �le. Some other software projects require a multi-step
build system, for example:

1. Compile a subset of the source-code �les to produce a utility pro-
gram, such as a code generator.

2. Run that utility program to generate additional source-code �les.

3. Compile the newly generated �les plus the remaining source-code
�les, and combine them to form a library, executable or jar �le.

Con�g4Cpp requires that type of multi-step build system. This is due
to the default security policy, which must be embedded within the Con-
�g4Cpp library.

The �rst step of the build system is to compile a few source-code �les
to produce a simpli�ed version of config2cpp called config2cpp-nocheck.
In a moment, I will explain how and why this �no check� version of the
utility is simpli�ed. But before that, I will discuss the remaining steps
of the build system.

18 CHAPTER 3. ARCHITECTURAL OVERVIEW

The second step of the build system is to run the newly compiled
utility on the DefaultSecurity.cfg �le to produce a C++ class called
DefaultSecurity.

The third step of the build system is to compile this newly generated
class plus the remaining source-code �les, and combine them to form a
library and executable.

The (non-simpli�ed) config2cpp cannot be used in step 2 of the build
system because it makes use of the Con�g4Cpp library, which is not
built until step 3 of the build system. (In particular, it is the schema-
generation functionality of the utility that makes use of the Con�g4Cpp
library.)

The (simpli�ed) config2cpp-nocheck utility does not contain any
schema-generation functionality. This simpli�cation means it avoids any
dependency on the Con�g4Cpp library. This simpli�ed utility is used
only by the build system: it is not copied into the bin directory for use
by regular users of Con�g4*.

Originally, Con�g4J used a similar multi-step build process. How-
ever, Version 1.2 of Con�g4J introduced support for strings of the form
"classpath#path/to/file.cfg" that can be passed as a parameter to
the Configuration.parse() operation. This Java-speci�c enhancement
means that the DefaultSecurity.cfg �le can now be found by search-
ing for it on the classpath (which is guaranteed to work since the �le is
embedded as a resource �le in config4j.jar). In turn, this means that
Con�g4J can now make use of a simpler, single-step build system: just
compile all .java �les and create config4j.jar.

3.7 Features Implemented with Delegation

Two important pieces of functionality (fallback con�guration and secu-
rity policies) are implemented by having the user-created Configuration

object delegate to another, but internal, Configuration object. In this
section, I brie�y explain how the delegation works.

3.7.1 Fallback Con�guration

One of the instance variables in the ConfigurationImpl class is a C++
pointer or Java reference to another ConfigurationImpl object. In Con-
�g4J, this instance variable is called fallbackCfg, while in Con�g4Cpp it
is called m_fallbackConfig. (In general, Con�g4Cpp uses "m_" as a pre�x
on the names of member, that is, instance, variables.) The constructor

3.7. FEATURES IMPLEMENTED WITH DELEGATION 19

initialises this instance variable to be a C++ nil pointer or Java null

reference. The setFallbackConfiguration() operation sets it to point to
another Configuration object.

The Configuration class de�nes many type-speci�c lookup opera-
tions, such as lookupList(), lookupString() and lookupBoolean(). The
implementations of those operations, either directly or indirectly, invoke
a more primitive operation called lookup(), which looks for the desired
entry in the hash tables. If lookup() �nds the entry, then it returns a
pointer/reference to the relevant hash table's ConfigItem; otherwise, it
continues the search by delegating to the fallback con�guration object.
This can be seen in the abridged pseudocode algorithm shown below:

ConfigItem lookup(String fullyScopedName, String localName, ...)

{

ConfigItem item;

item = ...; // search for fullyScopedName in the hash tables

if (item == null && fallbackCfg != null) {

item = fallbackCfg.lookup(localName, localName, ...);

}

return item;

}

3.7.2 Security Policy

The enforcement of Con�g4*'s security policy relies on the interaction
between three items: (1) a singleton object representing the default se-
curity policy; (2) two instance variables in the ConfigurationImpl class;
and (3) an operation called isExecAllowed(). I will discuss each of those
in turn.

In Section 3.6 on page 17, I explained how the build system embeds
a DefaultSecurity.cfg �le into the Con�g4* library. That embedded
con�guration �le provides the default security policy. A class called
DefaultSecurityConfiguration: (1) inherits from ConfigurationImpl;
(2) uses its constructor to parse the embedded DefaultSecurity con�g-
uration �le; and (3) provides a singleton object. That singleton object
is the default security policy used by all Configuration objects.

The ConfigurationImpl class contains two instance variables that are
used to implement the security policy:

// Java instance variables

Configuration securityCfg;

String securityCfgScope;

20 CHAPTER 3. ARCHITECTURAL OVERVIEW

// C++ instance variables

Configuration * m_securityCfg;

StringBuffer m_securityCfgScope;

The ConfigurationImpl constructor initializes the (m_)securityCfg vari-
able to point to the DefaultSecurityConfiguration singleton object, and
initialises (m_)securityCfgScope to be an empty string (denoting the root
scope). A programmer can update those instance variables by calling the
setSecurityConfiguration() operation.

Recall that there are three ways Con�g4* can execute an external
command:

cfg.parse("exec#command");

@include "exec#command";

name = exec("command");

Whenever Con�g4* is asked to execute an external command, it calls
isExecAllowed() to determine if the security policy in e�ect allows the
speci�ed command to be executed. That operation makes its decision
by comparing details of the speci�ed command to the allow_patterns,
deny_patterns and trusted_directories variables that appear in the
(m_)securityCfgScope scope of the (m_)securityCfg con�guration object.

3.8 Thread safety

Implementations of Con�g4* are not thread safe. The lack of thread
safety was a deliberate design decision, and was based on two consider-
ations.

First, some programming languages do not provide portable synchro-
nisation facilities. Thus, avoiding reliance on such facilities helps to keep
the architecture of Con�g4* portable across programming languages.

Second, all the operations in the API of Con�g4* fall into one of two
categories: either they are query operations such as lookup<Type>(),
or they are update operations such as parse(), ensureScopeExists(),
insert<Type>(), remove() and empty(). I imagine that most multi-
threaded, Con�g4*-based applications will use a single thread to call one
or more update operations to initialise a Configuration object. Once
initialisation is complete, the Configuration object can then be made
available to other threads within the application, but those threads will
invoke only query operations on it. It is safe for multiple threads to
invoke query operations concurrently.

Chapter 4

Portability

4.1 Introduction

Many people consider a piece of software to be portable if it can be built
with di�erent brand names of compiler on di�erent operating systems.
I think that is an overly narrow view of portability. In my opinion, the
portability of software is increased if the software refrains from using the
most recently introduced features of a programming language, because
that means the software is portable to both new and older versions of a
programming language.

4.2 Compatibility with Old Compilers

During the 15 years I spent working in the professional services depart-
ment of a software vendor, I visited many companies who were slow to
upgrade software that they were using. An example of how slow some
companies are to upgrade is provided by Microsoft. Microsoft released
version 6.0 of the Visual Studio C++ compiler in 1998. In 2010, some de-
velopers are still using that version of the compiler, despite the fact that
Microsoft have brought out �ve major newer releases in the intervening
12 years.

When implementing Con�g4Cpp and Con�g4J, I decided to avoid
using relatively new language features whenever possible. By �relatively
new�, I mean less than 5 or 10 years old. My intention is that Con�g4Cpp
and Con�g4J can be used not just with the latest versions of compilers,

21

22 CHAPTER 4. PORTABILITY

but with older compilers too.
For Con�g4J, this means that annotations, generics and enumera-

tions (all introduced in Java 5) have been avoided. I also decided to
avoid using the assert keyword (introduced in Java 1.4); instead I wrote
the Util.assertion() operation to provide similar functionality.

For Con�g4Cpp, I have been happy to use exceptions, namespaces,
and single inheritance, but I avoided static_cast<>, multiple inheri-
tance, template types and the standard C++ library (instead I rely only
on the standard C library). Further discussion of this is given in the
Con�g4* C++ API Guide.

4.3 Platform-speci�c Issues

In general, portability of Java code is better than portability of C++
code. This has resulted in Con�g4J containing very little platform-
dependent code. In fact, the only non-trivial platform-dependent code is
in the implementation of getenv() in the ConfigurationImpl class. You
can �nd a discussion of this in comments in the code.

In Con�g4Cpp, I have encapsulated platform-speci�c code in the �les
platform.h and platform.cpp. Interested readers should look at the com-
ments in those �les to see the approach taken to dealing with platform-
speci�c issues.

Chapter 5

Coding Conventions

5.1 Introduction

This chapter discusses conventions used in the source code of Con�g4J
and Con�g4Cpp.

5.2 Naming Conventions

Most identi�ers in Con�g4J and Con�g4Cpp are spelled using mixed
capitalisation without any underscores�what is sometimes called �camel
case� convention. Class names begin with an upper-case letter (for exam-
ple, LexToken), while the names of operations and variables begin with
a lower-case letter (for example, lookupString()). Named constants are
spelled in all upper-case with underscores (for example, CFG_SCOPE, which
is de�ned in the Configuration class).

The naming conventions discussed above should be familiar to most
Java programmers. Those naming conventions are less widely used
among C++ programmers, where some people prefer identi�er names
to consist of lower-case letters and underscores instead of camel case.
I decided to use the Java naming convention in Con�g4Cpp to provide
consistency in the public API and, to a lesser extent, implementation
code.

Some minor di�erences in the naming conventions arise with regard to
what C++ programmers call an instance (ormember) variable, and what
Java programmers call a �eld. In Con�g4Cpp, I use "m_" as a pre�x on

23

24 CHAPTER 5. CODING CONVENTIONS

the names of such variables because that convention is deeply ingrained
in my memory muscles. I do not use any such pre�x in Con�g4J. If
such a variable has a public accessor operation, then this is given a
"get" pre�x in Con�g4J, but not in Con�g4Cpp. For example, a C++
instance variable called m_foo might have an accessor operation called
foo(), while the Java counterparts are called foo and getFoo().

Java requires that the name of a source-code �le match the name
of the class contained in it. For example, the �le Foo.java contains a
class called Foo. C++ does not have this same requirement, but the
source-code of Con�g4Cpp uses that naming convention.

5.3 Use of a Single Namespace/Package

All the source code of Con�g4Cpp is in a single namespace. The de-
fault name of this is config4cpp, but you can change that by editing the
<config4cpp/namespace.h> �le. Likewise, all the source code of Con�g4J
is in a single package. The name of this is org.config4j, but you should
be able to change the package name easily by doing a global search-and-
replace on the source-code �les. Alternatively, an integrated develop-
ment environment (IDE) might provide a �refactoring� menu option to
change the package name.

Putting all the source code into a single namespace/package was done
deliberately to help companies avoid a potential versioning link problem,
as I now explain.

Let's assume your company makes and sells a software library called
Foo. Internally, Foo uses version p.q of Con�g4Cpp. One of your cus-
tomers is trying to build an application that links with both the Foo
library and also the Bar library (which is sold by another company).
The Bar library also uses Con�g4Cpp internally, but, unfortunately, it
uses the newer version x.y. If versions p.q and x.y of Con�g4Cpp are not
binary compatible, then you are likely to receive technical support calls
from your customer, asking you to urgently upgrade to the x.y version
of Con�g4Cpp, so the customer can build their application without link
errors.

You can avoid the need to deal with such technical support requests
if you take two steps when implementing the Foo library. First, change
the namespace of Con�g4Cpp when compiling it for use inside the Foo
library. Second, if the Foo library needs to expose a con�guration API to
users of Foo, then do not expose the Con�g4Cpp API directly. Instead,

5.4. INDENTATION AND SPACING 25

look at the source code of some of the demo programs (discussed in the
Con�g4* Getting Started Guide) to see how you can put a Foo �wrapper�
API around the Con�g4Cpp API. If you take those two simple steps, then
your customers will not encounter the linking problems discussed above.

There is, unfortunately, a price to be paid for the above advice:
code bloat. In particular, your customer's application will end up being
linked with several copies of Con�g4Cpp (each compiled in a di�erent
namespace). At the time of writing, each copy of the Con�g4Cpp library
will add a few hundred KB to an application. However, I think such
code bloat is an acceptable price to pay when when modern computers
have several GB of RAM.

5.4 Indentation and Spacing

Indentation in source-code �les is with TAB characters. Please con�gure
your text editor or integrated development environment (IDE) so that a
TAB character displays as 4 spaces.1 Lines of source code should never
be more than 80 columns wide.

Please do not put spaces around "(" or ")" characters when invoking
a function. Also, the opening "{" in an if-then-else statement, while-loop
or for-loop should not be on a separate line (unless you need to avoid
line wrap).

obj.someOp (parameter); // bad

obj.someOP(parameter); // good

if (someCondition) // bad

{

...

}

if (someCondition) { // good

...

}

1If you use the vim text editor, then the following information may be useful. By

default, vim treats a TAB character as 8 spaces. You can override this for C++ and

Java �les by placing the following line into the .vimrc �le in the directory speci�ed

by the HOME environment variable:

autocmd FileType cpp,java setlocal tabstop=4 shiftwidth=4

26 CHAPTER 5. CODING CONVENTIONS

Chapter 6

Parsers and Lexical

Analysers

6.1 Introduction

In this chapter, I discuss the approach taken to implement the parsers
and lexical analysers that are used in Con�g4*.

6.2 Avoidance of Parser Generators

There are many tools available that can generate a lexical analyser or
parser. However, I decided to write those parts of Con�g4* by hand. I
did this for two reasons.

First, when I was an undergraduate student at university, I learned
how to use the UNIX tools lex (for generating a lexical analyser) and
yacc (for generating a parser). But I also learned how to write a lexical
analyser and recursive-descent parser by hand. I prefer the hand-written
approach, at least for small grammars.

Second, one of my hopes is that people will volunteer to implement
Con�g4* in other programming languages. It should be straightforward
to port a hand-written lexical analyser and parser to another (object-
oriented or procedural) programming language. This is because those
components are implemented with just �normal code�, so the port from
C++ to, say, Ada would be just a port of �normal code�.

27

28 CHAPTER 6. PARSERS AND LEXICAL ANALYSERS

In contrast, if I had used, say, lex and yacc in the C++ implemen-
tation, and you wanted to implement an Ada version, then you would
have had to do the following.

1. Find lex- and yacc-like tools for Ada.

2. Translate the lex and yacc �les into the syntax required for their
counterparts in Ada. Doing this would probably require you to
learn how to use lex and yacc and their Ada counterparts.

3. If there is not a one-to-one match of features in lex and yacc, and
their Ada counterparts, then you would have to to �gure out how
to emulate some of the lex and yacc functionality in their Ada
counterparts. If you did this incorrectly, then you might introduce
subtle bugs in the lexical analyser or parser.

The above steps would introduce complexity that does not exist with a
hand-written lexical analyser and parser.

6.3 Lack of Error Recovery

The parsers in many compilers implement error recovery. This means
that when the parser encounters an error, it reports the error and then
tries to recover by skipping input until the parser encounters, say, the
next semicolon (indicating the end of a statement) or close brace (indi-
cating the end of a scope). Having recovered, the parser can examine the
rest of the input �le to check if it contains any additional errors. Error
recovery enables a single run of a compiler to report several errors. This
can speed up software development, especially if the compiler is slow.

To keep the Con�g4* parser simple, it does not make any attempt
to do error recovery. Instead, when the parser encounters an error, it
reports the error and stops immediately. The lack of error recovery
simpli�es the design of the Con�g4* parser. And because the parser is
extremely fast, I do not feel it is particularly burdensome for a user to
�x one error at a time and then attempt to re-parse a con�guration �le.

6.4 A Hierarchy of Lexical Analysers

The Con�g4* library provides parsers�and, hence, lexical analysers�
for two distinct languages: (1) the con�guration language; and (2) the

6.5. PARSING @IF-THEN-@ELSE STATEMENTS 29

schema language. There is a lot of overlap between the lexical analysers
used to implement the two parsers. For example, the lexical analysers
recognise string literals, identi�ers and punctuation symbols (such as "="
and ",") in the same way. However, each lexical analyser must recognise
distinct sets of keywords and function names.

To avoid code bloat and simplify maintenance, the lexical analysers
are implemented as a class hierarchy that consists of a base class plus
two sub-classes. The base class, LexBase, implements almost all the func-
tionality required of the two lexical analysers. However, this base class
is not hard-coded with details of keywords or function names. Instead,
two of its instance variables are pointers/references to arrays that pro-
vide information about keywords and function names. The constructors
of the ConfigLex and SchemaLex subclasses simply initialise those arrays
with information about the keywords and function names speci�c to a
particular language.

6.5 Parsing @if-then-@else statements

Con�g4* contains a bug in how @if-then-@else statements are parsed.
In this section, I start by explaining a subtle problem that underpins the
bug. Afterwards, I explain the buggy approach I took to addressing the
problem.

6.5.1 A Subtle Problem

Consider the following con�guration �le:

@if (osType() == "unix") {

then part

install_dir = getenv("FOO_HOME");

log_dir = install_dir + "/logs/" + exec("hostname");

} @else {

else part omitted for brevity

...

}

Let's assume the above �le is parsed on a Windows-based computer, so
the condition evaluates to false. Because of this, the parser must ignore
all the statements in the �then� part of the @if-then-@else statement,
and instead process all the statements in the �else� part.

30 CHAPTER 6. PARSERS AND LEXICAL ANALYSERS

But what is meant by ignore? Obviously, the parser must not up-
date the Configuration object with name=value pairs for install_dir

or log_dir.
Actually, ignore implies more than just �do not update�. It also

implies �do not query� the Configuration object. To understand why,
consider the second assignment statement in the above con�guration
�le. When parsing that statement, the parser must not try to query the
value of the install_dir variable because the �do not update� behaviour
means that that variable does not exist.

Ignore also implies that function calls should not be evaluated. There
are two reasons for this. The �rst reason is optimisation�for example, it
would be a waste of CPU cycles to execute the hostname command and
capture its output if that output will then be silently ignored. The other
reason is that the parameter passed to a function might be a variable
that (because of the �do not update� behaviour) might have not been
assigned a value.

Ideally, when the parser is ignoring the �then� part of the @if-then-
@else statement, the only thing it should be doing is making sure there
are no syntax errors in the statements being ignored. Unfortunately,
the grammar used by the parser makes this di�cult to do in an e�cient
and easy-to-code manner. To understand why, consider the following
abridged assignment statements:

foo = "hello" + ... ;

foo = getenv(...) + ... ;

foo = [... ;

foo = split(...) + ... ;

foo = bar + ... ;

The parser processes each of the above statements as follows.
First, the parser obtains the foo identi�er token from the lexical

analyser. At this point, the parser does not know if the statement is an
assignment statement or the opening of a scope. To �nd out, the parser
obtains the next token from the lexical analyser. If that next token is an
open brace ("{"), then the parser knows it is parsing the opening of a
scope. Conversely, if the token is an assignment operator ("=" or "?="),
then the parser knows it is parsing an assignment statement.

Now that the parser knows it is dealing with an assignment state-
ment, it needs to determine if the assignment operator is followed by
a string expression or a list expression. To do this, the parser obtains
the next token from the lexical analyser. If that next token is a string
literal (such as "hello") or the name of a function that returns a string

6.5. PARSING @IF-THEN-@ELSE STATEMENTS 31

(such as "getenv("), then the parser knows it must parse a string ex-
pression. Conversely, if the token is "[" or the name of a function that
returns a list (such as "split("), then the parser knows it must parse a
list expression.

So far, all that I have explained above is straightforward. However,
a problem arises if the token after the assignment statement is an iden-
ti�er (such as bar). In this case, the parser must invoke type() on
the Configuration object to determine the type of the variable speci-
�ed by the identi�er. Unfortunately, when the assignment statement is
nested inside the non-executed branch of an @if-then-@else statement,
the �do not query� behaviour prevents the parser from being able to
invoke type().

6.5.2 An Imperfect Approach to Tackling the Prob-
lem

The approach taken by the Con�g4* parser to ignore the statements in
a non-executed part of an @if-then-@else statement is as follows.

The parser goes into a loop, in which it consumes tokens from the
lexical analyser until it �nds the closing brace ("}") of that part of the
@if-then-@else statement. The skipToClosingBrace() operation of the
ConfigParser class implements that logic.

That approach o�ers the bene�t of being trivial to implement. Un-
fortunately, it has a signi�cant �aw: it allows syntax errors to go unde-
tected. An example of this is shown in the con�guration �le below.

@if (osType() == "unix") {

greeting == "Hello, UNIX user"; # syntax error

} @else {

greeting = "Hello, Windows user";

}

That �le contains a syntax error: the �rst assignment statement mis-
takenly uses "==" (the equality testing operator) instead of "=" (an as-
signment operator). The Con�g4* parser will not report that error if
the con�guration �le is used on Windows. It is only when a person later
uses the con�guration �le on a UNIX machine that the syntax error will
be reported.

Could Con�g4* be modi�ed to use a more intelligent way of ignoring
the non-executed part of an @if-then-@else statement? Probably, but
I suspect it would involve signi�cant changes to the parser, and those
changes would introduce a lot of complexity.

32 CHAPTER 6. PARSERS AND LEXICAL ANALYSERS

Part II

Areas for Improvement

33

Chapter 7

Missing Components

7.1 Introduction

A mature software project includes more than just code. It also contains
other components. In this chapter, I list some of those �other compo-
nents� that currently are missing from, or inadequate in, Con�g4*. Per-
haps some readers will be willing to contribute to Con�g4* by rectifying
these de�ciencies.

7.2 Cross-platform Build System

The C++ build system uses Gnu make and has been tested on just two
platforms: Linux and Cygwin, both using the Gnu C++ compiler.

The Java build system uses Apache ant, which provides better porta-
bility than Make�les. However, there is probably room for improvement
in the build.xml �le.

7.3 Javadoc and Doxygen Documentation

The Con�g4* C++ API Guide and Con�g4* Java API Guide document
the API (that is, application programming interface) of Con�g4*. How-
ever, that documentation is arranged in logical groupings, and sometimes
it is more convenient to have API documentation that is arranged as an
alphabetical list of class names and operation names.

35

36 CHAPTER 7. MISSING COMPONENTS

For this reason, it would be useful for Javadoc- or Doxygen-style
comments to be added into the source code. It is likely that the law
of diminishing returns will apply: it is most important to provide this
documentation for the publicly-accessible classes and operations, and
less important to provide it for the internal classes and operations.

7.4 Installation Packages

The usability of Con�g4* would be enhanced if it could be distributed in
a range of popular installation package formats, such as ".rpm", ".deb"
and InstallAnywhere.

7.5 Regression Test Suite

Why does Con�g4Cpp not have a comprehensive regression test suite?
This is because I started writing my �rst con�guration parser (which
would eventually mature to be Con�g4Cpp) before Kent Beck popu-
larised the development of unit testing frameworks.1 Thus, it was easy
for me to get into the bad habit of not having unit tests that I could use
for regression testing and, unfortunately, that bad habit has survived.

Unit testing frameworks were widely available by the time I wrote
Con�g4J, so why does Con�g4J not have a comprehensive regression test
suite? This is because I wrote the initial version of Con�g4J by making
a copy of Con�g4Cpp's source code and then spending two repetitive
strain injury-inducing weeks converting C++ syntax into Java syntax.
It seemed easier to do just that conversion than to do the conversion and
also write unit tests.

Currently, Con�g4Cpp and Con�g4J do have a regression test suite,
but it is only for schema types. This is in the tests/schema-types direc-
tory of an installation.

1http://en.wikipedia.org/wiki/XUnit

Chapter 8

Rethinking the

Architecture

8.1 Introduction

It would be great if the complete list of features in Con�g4* had formed
in my head during, say, a weekend, and then I had spent several months
designing and implementing them. But, as I explained in Chapter 2,
Con�g4* started life with minimal functionality (just assignment state-
ments and scopes), and slowly acquired extra features over the course of
almost 15 years before its �rst public release. Occasionally, this resulted
in me discovering that the existing architecture of Con�g4* was not �ex-
ible enough to elegantly support a new feature that I decided to add.
In some cases, I redesigned Con�g4* to better accommodate the new
feature. In some other cases, I added the new feature with an inelegant
hack.

In this chapter, I discuss some of the Con�g4* features that might
bene�t from a better design.

8.2 Parsing @if-then-@else statements

Section 6.5 on page 29 discusses a bug in the parsing of @if-then-@else
statements. In summary, the parser uses a simplistic algorithm to ignore
a non-executed �then� or �else� branch: it discards lexical tokens until it
�nds the closing "}" of the branch. The problem with this algorithm is

37

38 CHAPTER 8. RETHINKING THE ARCHITECTURE

that syntax errors in a non-executed branch can go undetected, and this
violates the fail fast principle [Sho04].

8.3 Location Information in Error Messages

Section 3.5.2 on page 13 explains why some error messages from Con�g4*
do not specify the line number and �le name of the source of the error.
It would be good to �nd a memory-e�cient and reasonably simple way
to overcome that limitation.

8.4 Uid- entries

I introduced the "uid-" pre�x fairly late in the development of Con�g4*.
For many years before I introduced this feature, I had occasionally been
frustrated at the need to de�ne unique names for similar identi�ers, for
example, employee_1, employee_2, employee_3, and the need to write
code that could identify and process such entries in a well-de�ned order.

Then one day, I started to write the Comparison with other Tech-
nologies chapter of the Con�g4* Getting Started Guide. In that chapter,
I planned to explain how Con�g4* was clearly superior to other con�g-
uration technologies, including Java properties, the Windows Registry
and XML. However, as I was writing the section on XML, I realised that
Con�g4* was not clearly superior. It was better than XML in several
ways, but XML had one important feature that was lacking in Con�g4*:
the ability for a �le to contain several distinct entries that have the same
name. This focused my attention enough for me to brainstorm on a way
to add similar functionality to Con�g4*. The result was that I added the
"uid-" pre�x to the syntax of Con�g4*, and I enhanced the API with
some new operations to support that new feature.

The "uid-" pre�x provides a solution to a particular problem. The
problem is certainly an important one, but I am not sure that the "uid-"
pre�x is the best solution to that problem. I say that for two reasons.

� I have had only limited opportunities to use the "uid-" pre�x in
anger, so I do not yet have su�cient experience to feel con�dent
that it will stand the test of time.

� Second, I designed the "uid-" pre�x partly to address a frustration
I had been having, and partly as a �marketing tick-box feature� so
that Con�g4* could hold its own in comparisons with XML. As

8.5. ALTERNATIVE SCHEMA VALIDATORS 39

many technically-minded people know, technical decisions made
for marketing reasons are often suboptimal.

Despite the above concerns, I have been reasonably happy with the
"uid-" pre�x so far. However, perhaps there is a still-to-be-discovered
mechanism that is better and more elegant than the "uid-" pre�x.

8.5 Alternative Schema Validators

There are several reasons why I like the Con�g4* schema validator. It
provides a lot of useful functionality in a relatively small amount of code.
The schema language is intuitive. And the API of the SchemaValidator

class is trivial to use.
Having said all that, the schema language has limitations. Perhaps

somebody will be able to enhance the schema language with new features.
Or perhaps somebody will develop a competing schema language for use
with Con�g4*. If you wish to take the latter approach, then you might
�nd the following information useful.

For the most part, the schema validator interacts with Con�g4* using
just its public interface. The only exception to this is that the schema val-
idator's lexical analyser (the SchemaLex class) inherits from the LexBase

class, which currently is not part of Con�g4*'s documented API. There
is no compelling reason for LexBase to remain an undocumented imple-
mentation detail. It is that way due to laziness on my part. So, if you
want to experiment with writing your own schema validator and you
would like to inherit from LexBase, then you have two options.

One option is to implement your class in the same namespace/pack-
age as Con�g4*. I think that might be good for prototyping purposes,
but it runs the risk of the namespace/package growing to an unmanage-
able size, especially if several people each implement their own competing
schema validators.

The other option is to �rst refactor code and write documentation
to make LexBase a �rst-class citizen of the documented API of Con�g4*,
and then write a schema validator (in a new namespace/package) that
makes use of it.

8.6 Drawback of an Abstract Base Class

Consider the following scenario. Fred is a software developer working
for the Acme company. He plans to use Con�g4J in several company-

40 CHAPTER 8. RETHINKING THE ARCHITECTURE

internal applications. These applications require the ability to retrieve
email addresses and dates from con�guration �les. Fred decides to write
a class called, say, AcmeConfiguration, that inherits from Configuration

and adds the required lookup-style operations. Once this has been done,
Fred can then use the AcmeConfiguration class in the applications he
wants to implement.

Unfortunately, Fred cannot implement the AcmeConfiguration class
simply by inheriting from the Configuration class and adding a few
lookup<Type>() operations. This is because the Configuration class
contains approximately 90 abstract operations. The AcmeConfiguration
subclass will have to provide an implementation for each of those. The
implementation of those inherited abstract operations can be achieved
through delegation, as illustrated in Figure 8.1 on page 41.

This approach can work, but it involves a lot of tedious delegation
code, which Fred would prefer to not have to write. I can think of three
options to remove that burden from Fred.

The �rst option is for the Con�g4* library to contain a class called,
say, InheritableConfiguration that implements the required delegation-
based infrastructure. Then Fred could implement his AcmeConfiguration
class by inheriting from InheritableConfiguration and adding just his
new functionality.

The second option is to recombine the hidden implementation de-
tails of the ConfigurationImpl class with the publicly visible API of the
Configuration class.

Those two options seem obvious, but I decided to not implement
either one; at least not yet. This is because I suspect that: (1) I am not
the �rst person to have encountered this issue; and (2) the options may
have some subtle rami�cations I have not thought of. I will wait until
I gain a bit more experience in this area (or other people share their
experience with me) before deciding which option to implement.

The third option, which I currently recommend, is discussed near
the end of the The SchemaValidator and SchemaType Classes chapter in
the Con�g4* Java API Guide. In brief, if Fred wants to provide lookup
operations for email addresses and dates, then he should also consider
providing schema support for those data types. He could then de�ne the
lookup operations on the SchemaType<Type> classes.

8.6. DRAWBACK OF AN ABSTRACT BASE CLASS 41

Figure 8.1: Pseudocode of a Configuration subclass

package com.acme.common;

import org.config4j.Configuration;

import java.util.Date;

public class AcmeConfiguration extends Configuration

{

private Configuration cfg; // delegation object

public AcmeConfiguration()

{ cfg = Configuration.create(); }

//--------

// Implement all the inherited operations through delegation

//--------

public String lookupString(String scope, String name)

{ return cfg.lookupString(scope, name); }

public String lookupString(String scope, String name,

String defaultValue)

{ return cfg.lookupString(scope, name, defaultValue); }

... // likewise for all the other inherited operations

//--------

// Now add new operations

//--------

public Date lookupDate(String scope, String name)

{ ... }

public Date lookupDate(String scope, String name,

String defaultValue)

{ ... }

public String lookupEmailAddress(String scope, String name)

{ ... }

public String lookupEmailAddress(String scope, String name,

String defaultValue)

{ ... }

}

42 CHAPTER 8. RETHINKING THE ARCHITECTURE

Chapter 9

Other Programming

Languages

9.1 Introduction

I hope that, over time, people will volunteer to implement Con�g4* for
numerous programming languages. If that happens, then there will be
several important bene�ts.

First, no matter what programming language a person decides to use
for an application, there is a good chance that he or she can use Con�g4*
rather than having to use an inferior con�guration technology.

Second, it is common for di�erent parts of a large project to be im-
plemented in di�erent languages. For example, in a client-server system,
server applications might be implemented in C++, client applications in
Java, and administration utilities in Perl. Since those applications are
all part of the same overall project, there is a good chance that they will
all need the ability to parse a common con�guration �le.

Third, the "uid-" pre�x promotes Con�g4* from being �merely� a
con�guration language to being a �le format suitable for data exchange.
Having implementations of Con�g4* in many programming languages
will make it possible for a program implemented in one language to
exchange data with programs implemented in other languages.

This chapter summarises some of the issues that are likely to arise in
implementing Con�g4* in a wide variety of programming languages.

43

44 CHAPTER 9. OTHER PROGRAMMING LANGUAGES

9.2 Scripting Languages

Let's assume an implementation of Con�g4* requires about 10,000 lines
of code (excluding comments and blank lines). What's a good way to
implement Con�g4* for popular scripting languages, such as Lua, Perl,
PHP, Python, Ruby and Tcl?

One way is to write 10,000 lines of Lua code to implement Con-
�g4Lua, then write another 10,000 lines of code to implement Con-
�g4Perl, and so on. However, this approach su�ers from two prob-
lems. First, many scripting languages are interpreted, so Con�g4* imple-
mented directly in a scripting language will be relatively slow. Second,
10,000 lines of code in each of several scripting languages quickly adds
up to be a lot of code to write and maintain.

A better way is based on the fact that many popular scripting lan-
guages (including those mentioned at the start of this section) are im-
plemented in C and can be extended with new functionality written
in C. Thus, a good �rst step would be to write 10,000 lines of C code
to implement Con�g4C. Then, a few hundred lines of extra code could
be written to provide a Lua extension �wrapper� around the Con�g4C
library, another few hundred lines of code could be written to provide a
Perl extension �wrapper� around the Con�g4C library, and so on. This
approach would provide a compiled�and hence fast�implementation of
Con�g4* for scripting languages. It would also signi�cantly reduce the
amount of code, and hence e�ort, required to add Con�g4* to scripting
languages.

9.3 Advice for Implementers

If you want to implement Con�g4* for another programming language,
then I suggest you take the following steps.

Start by reading all the Con�g4* documentation. In particular, make
sure you understand the information in this manual (the Con�g4* Main-
tenance Guide).

Then make a copy of the source code of Con�g4Cpp or Con�g4J,
and start hacking at the copy to translate its syntax into that of your
target programming language. Doing this translation will be tedious�
I know this, because I used this approach to develop Con�g4J from
Con�g4Cpp�but it o�ers two bene�ts. First, it will help to familiarise
you with the architecture and source code of Con�g4*. Second, this

9.3. ADVICE FOR IMPLEMENTERS 45

translation approach is much faster than developing a new implementa-
tion of Con�g4* from scratch.

46 CHAPTER 9. OTHER PROGRAMMING LANGUAGES

Chapter 10

Internationalisation

10.1 Introduction

One aspect of internationalisation is the ability of an application to ac-
cept input in multiple human languages, such as English, Greek and
Japanese. Nowadays, that ability is usually achieved by providing sup-
port for Unicode in the application. Having read some books on Unicode,
I have come to two conclusions. First, the Unicode standard has some
rough edges that can be irritating. Second, and more frustratingly, Uni-
code is not implemented widely enough in programming languages. Both
of these issues a�ect Con�g4*, as I explain in this chapter. However, I
expect that some readers may have a poor understanding of Unicode, so
I will start by giving an overview of its concepts and terminology.

10.2 Unicode Concepts and Terminology

Unicode 1.0 was de�ned as a 16-bit character set. This meant it could
represent a maximum of 216 = 65, 536 characters. In Unicode terminol-
ogy, a code point is a number that denotes a character within a character
set. For example, in the ASCII character set, code point 65 denotes the
character `A'. Thus, Unicode 1.0 had 216 = 65, 536 code points.

The designers of Unicode 1.0 estimated that supporting all the living
languages in the world would require about 16,000 code points, so the
16-bit limit of Unicode 1.0 seemed to be more than su�cient. However,
within a few years, they realised that their estimate was too low. That,

47

48 CHAPTER 10. INTERNATIONALISATION

combined with an emerging desire for Unicode to be able to support
ancient languages such as Egyptian Hieroglyphs, meant Unicode had to
extend beyond 16-bits.

To accommodate the additional code points (and allow room for fu-
ture ones), Unicode 2.0 was de�ned to be a 21-bit character set. Of
course, since a 21-bit word size is uncommon in computers, Unicode is
normally thought of as being a 32-bit character set (the high-end 11 bits
are unused). You might think this means that Unicode can now support
a maximum of 221 = 2, 097, 152 code points. However, some technical
details in the Unicode speci�cation mean that parts of the number range
are unusable, so Unicode is able to support (only) 1,114,112 code points.
Currently (as of Unicode 5.2), 107,361 of these code points have been
assigned, so there is still signi�cant room for future expansion.

10.2.1 Planes and Surrogate Pairs

If you want to store a collection of all the 1,114,112 code points in Uni-
code 2.0, then you could use a single-dimensional array of that size.
However, another possibility is to use a two-dimensional array, because
17×65, 536 = 1, 114, 112. When the Unicode Consortium were extending
Unicode beyond 16 bits, it decided to use such a two-dimensional rep-
resentation. In Unicode terminology, the range of code points is spread
across 17 planes, where each plane consists of 216 = 65, 536 code points.

The 17 planes are numbered 0..16. Plane 0 contains the 216 code
points from Unicode 1.0. To enable Unicode 2.0 to expand beyond the
16 bits of Unicode 1.0, 16 code points within plane 0 were reserved for
use as escape codes. This makes it possible to represent a code point in
plane N with two 16-bit words: the �rst word speci�es the escape code
for plane N , and the second word speci�es an index into that plane. In
Unicode terminology, such a two-word pair is called a surrogate pair ; the
escape code is called the high surrogate, and the following word is called
the low surrogate.

10.2.2 UCS-2, UTF-8, UTF-16 and UTF-32

A surrogate pair is one way to encode a 21-bit Unicode code point, and
that encoding format is known as UTF-16.

UCS-2 refers to the �16-bits �xed size� encoding used in Unicode 1.0.
Many people mistakenly think that UCS-2 and UTF-16 are the same.
The di�erence between them is subtle: UTF-16 supports surrogate pairs

10.2. UNICODE CONCEPTS AND TERMINOLOGY 49

(thus making it possible to support 21-bit code points), while UCS-2
does not support surrogate pairs.

Another Unicode encoding format is UTF-32, which, as its name
suggests, encodes a 21-bit code point as a 32-bit integer (the highest
11 bits are unused). Obviously, UTF-32 is a trivial encoding format.

Yet another Unicode encoding format is UTF-8. This uses one byte
to encode code points from 0..127, and uses multi-byte escape sequences
to encode higher code points. The details of this encoding format are
outside the scope of this discussion. The main point to note is that
UTF-8 uses between 1 and 4 bytes to encode a code point; the higher
the code point, the more bytes are required to encode it.

10.2.3 Merits of Di�erent Encodings

There is no �obviously best� encoding for Unicode. Instead, each encod-
ing has bene�ts and drawbacks.

UTF-32. The main bene�t of this encoding is the convenience for pro-
grammers of knowing that a codepoint is always represented in a
�xed-size amount of memory (a 4-byte integer). Because of this,
programmers do not have to worry about correctly handling surro-
gate pairs (in UTF-16) or multi-byte escape sequences (in UTF-8).

The main drawback is the amount of RAM or disk space required
to store UTF-32 strings. Some people hold the viewpoint that
RAM and disk space are getting exponentially cheaper, so concerns
about space ine�ciency will gradually reduce over time. I partially
agree with that sentiment. However, although the capacity of disk
drives increases rapidly from year to year, the bandwidth available
for transferring �les to/from a disk (or across a network) rises more
slowly. Because of this, it is bene�cial to use a compact encoding
when storing Unicode text in �les or transferring them across a
network.

UTF-16. All the code points required to support the majority of the
world's living languages are contained in plane 0. Notable excep-
tions include Chinese, Japanese and Korean (often abbreviated to
CJK). Plane 0 does not encode all the ideographs used in CJK, but
it encodes most of the commonly used ones. Because of this, sur-
rogate pairs tend to be used infrequently in most UTF-16 strings.
Thus, one signi�cant bene�t of UTF-16 is that strings encoded in

50 CHAPTER 10. INTERNATIONALISATION

it usually require about half as much space as strings encoded in
UTF-32.

Another bene�t of UTF-16 is that writing code to deal with the
possibility of surrogate pairs is easier than writing code to deal
with the possibility of multi-byte escape sequences (in UTF-8).

Because of the above two bene�ts, UTF-16 is commonly perceived
as providing a better �size versus complexity� trade-o� than either
UTF-8 or UTF-32.

UTF-8. A string encoded in UTF-8 is guaranteed to be no longer than
(and is typically much shorter than) the same string encoded in
UTF-32. The same is not true when comparing UTF-8 to UTF-16.

Whether a string encoded in UTF-8 consumes less memory ormore
memory than the same string encoded in UTF-16 depends on the
language used in the string. For example, UTF-8 usually requires
just one or two bytes to encode a character used in a Western
language, but two or three bytes to encode a character used in an
Eastern language.

Despite this uncertainty of the space e�ciency of UTF-8 versus
UTF-16, UTF-8 is commonly perceived as being the most space-
e�cient encoding of Unicode.

Another bene�t of UTF-8 is that it works well with byte-oriented
networking protocols.

A drawback of UTF-8 is the complexity involved in writing code
that correctly deals with multi-byte escape sequences.

UCS-2. It is best to avoid UCS-2 when writing new applications. Some
programmers working with UTF-16 write code that does not han-
dle surrogate pairs. In e�ect, this means that their applications
can handle only UCS-2 rather than UTF-16. Sometimes, such
programmers will claim that this limitation is acceptable because
(they mistakenly believe that) plane 0 encodes all the characters
of all the world's living languages, and they do not feel it is im-
portant for their applications to support, ancient languages, such
as Egyptian Hieroglyphs. However, that assumption about plane 0
is incorrect: some living languages contain characters that are en-
coded outside plane 0.

10.3. UNICODE SUPPORT IN JAVA 51

10.2.4 Transcoding

If a programming language supports Unicode, then it is likely that the
language provides native support for one of UTF-8, UTF-16 or UTF-32.1

It is common for the programming language to provide utility functions
for converting between its native Unicode encoding and other character
set encodings.

The term transcoding is commonly used to refer to the conversion of a
string from one character-set encoding to another. In some programming
languages with Unicode support, transcoding takes place automatically
during �le input/output.

For example, when an application reads a text �le, the �le contents
are transcoded from the character set speci�ed by the computer's locale
into the programming language's internal Unicode format. The appli-
cation then processes the text in the Unicode encoding. Finally, when
the application writes the text back out to �le, the text is automatically
transcoded from the programming language's Unicode format back into
the character-set encoding speci�ed by the computer's locale.

Programming languages that automatically transcode during �le in-
put/output try to achieve the best of both worlds: they provide a
programmer-friendly encoding (typically UTF-16 or UTF-32) to manip-
ulate strings in RAM, and a space-e�cient encoding (perhaps UTF-8)
when transferring to/from disk or across a network.

10.3 Unicode Support in Java

Java has always supported Unicode through its 16-bit char type. The
�rst version of Java was released in January 1996, which was during the
�nal months of Unicode 1.x. Because of this, Java supported UCS-2
initially.

Version 2.0 of Unicode, which de�ned UTF-16 and UTF-32, was re-
leased in July 1996. However, Java continued to support just UCS-2
for another eight years. Java 5.0, released in September 2004, �nally
upgraded Java's Unicode support from UCS-2 to UTF-16. To provide
support for UTF-16, the Character and String classes were extended
with new operations to identify surrogate pairs, to convert a surrogate

1An exception is the D programming language, which provides distinct data-types
for each of UTF-8, UTF-16 and UTF-32 (http://en.wikipedia.org/wiki/D_%28
programming_language%29#String_handling).

52 CHAPTER 10. INTERNATIONALISATION

pair into a 32-bit code point, and to manipulate code points. For ex-
ample, the Character.isLetter() operation is now overloaded to take
either a 16-bit value (a Java char) or a 32-bit code point.

The main place in Con�g4J's source code where Unicode support
arises is the lexical analyser. In particular, the lexical analyser calls
Character.isLetter() to help it determine if a character is part of an
identi�er. There are two obvious ways to handle this in the lexical anal-
yser.

Approach 1. The lexical analyser could ignore the possibility of surro-
gate pairs. Doing this would mean that Con�g4J could be compiled
with relatively new compilers (Java 5.0 and later) and also with
older compilers. However, by failing to correctly handle surrogate
pairs, Con�g4J would be restricted to working with UCS-2 rather
than UTF-16.

Approach 2. The lexical analyser could make direct use of operations
(introduced in Java 5.0) that support surrogate pairs and 32-bit
code points. Doing this would enable Con�g4J to support UTF-16,
but would make it impossible for people to compile Con�g4J with
older (pre-Java 5.0) compilers.

There is another, but non-obvious, way for the lexical analyser to handle
Unicode issues.

Approach 3. The lexical analyser could use re�ection to determine if
the surrogate pair- and code point-related operations of Java 5.0
are available. If those operation are available, then the lexical anal-
yser would use re�ection to invoke them, and thus Con�g4J would
support UTF-16. Conversely, if those operations are not avail-
able, then the lexical analyser would not attempt to invoke them,
and hence Con�g4J would gracefully degrade to supporting UCS-2.
This approach would o�er the best of the two previous approaches:
Con�g4J could be compiled with both old and new compilers, and
it would support UTF-16 if the Java runtime environment does.
There are two minor drawbacks to this approach.

First, invoking operations via re�ection is more complex than in-
voking them directly. Thus, the lexical analyser would be harder
to write and maintain. However, the use of re�ection would be
very localised, so the complexity introduced would be minimal.

Second, invoking operations via re�ection is slower than invoking
them directly. However, most of the Java 5.0-speci�c operations re-

10.4. UNICODE SUPPORT IN C AND C++ 53

quired are trivial enough to be reverse engineered and implemented
inside Con�g4J, so they could be invoked without the need to use
re�ection. Doing that would ensure that the performance overhead
of using re�ection would be incurred only when a surrogate pair
was encountered, which is likely to be very infrequently.

Currently, Con�g4J uses approach 1. I would like to see Con�g4J en-
hanced to support approach 3. I have not implemented approach 3 yet
due to a combination of reasons. First, I wanted to release a �good
enough� initial version of Con�g4J and defer improvements for a later
release (rather than defer an initial release until Con�g4J was perfect).
Second, I prefer to not write code for working with surrogate pairs unless
I can test that code properly and, unfortunately, at the moment I do not
have a good way to create, say, CJK-based con�guration �les that can
be used for testing.

10.4 Unicode Support in C and C++

Ideally, I would like Con�g4Cpp to have the following properties.

� Not be limited to working with 8-bit characters, such as those in,
say, English, but rather support the use of characters in arbitrary
languages. Since much of the world is converging on Unicode for
such support, Con�g4Cpp should support Unicode.

� Be portable across di�erent C++ compilers and di�erent operating
systems.

� Rely on only the standard C library.

In this section, I explain the challenges that make achieving all the above
very di�cult, if not impossible.

10.4.1 Limitations in the Standard C Library

UTF-8 is an example of a multi-byte character encoding: it uses one or
more bytes to encode each character.

UCS-2 and UTF-32 are examples of wide character encodings: they
use �xed-size integers (16 or 32 bits) to represent each character.

UTF-16 is a bit unusual. Its support for surrogate pairs means that
it is not a wide (that is, �xed-size) character encoding. Likewise, it is

54 CHAPTER 10. INTERNATIONALISATION

not a multi-byte encoding since its basic unit is a 16-bit word rather
than an 8-bit byte.

The C and C++ programming languages de�ne the char type, which
is usually associated with single-byte character encodings, such as ASCII
or the ISO-Latin-N family of encodings. However, the char type can also
be used with multi-byte encodings, such as UTF-8.

C and C++ also de�ne the wchar_t type, which is for use with wide
character encodings.2 The C and C++ language speci�cations do not
de�ne the size of wchar_t; the speci�cations merely state that wchar_t

is wide enough to hold all code points in the wide character encodings
supported by the compiler and its runtime libraries.

� The width of wchar_t might be as little as 8 bits. That statement
might seem like an oxymoron, but it makes sense if you consider
a compiler that is developed for use with an embedded system.
Such systems typically have a limited amount of RAM and may
not have a requirement to support internationalisation. In such
a scenario, the wchar_t type and its supporting functions might
be implemented as placebo wrappers around the char type and its
supporting functions.

� If the width of wchar_t is 16 bits, then this will be su�cient for
UCS-2 and some non-Unicode encodings.

� If the width of wchar_t is 32 bits, then this will be su�cient for
UTF-32 and some non-Unicode encodings.

An important point is that UTF-16 cannot be supported by a 16-bit
wide wchar_t; at least, not without resorting to third-party (and prob-
ably proprietary) functions for dealing with surrogate pairs. This is
important because Microsoft Windows (mis)uses a 16-bit wide wchar_t

type with UTF-16. Thus, if you are writing Unicode-aware applications
on Windows, then you are forced to use functions outside of the stan-
dard C library to deal with surrogate pairs. This can make it di�cult
to write Unicode-aware applications that are portable between Windows
and UNIX-based operating systems, most of which use a 32-bit wide
wchar_t type. One way to maintain cross-platform portability is to not
attempt to deal with surrogate pairs; this will result in your application
supporting UTF-32 on UNIX but only UCS-2 on Windows.

2In C, wchar_t is a typedef name (de�ned in <stddef.h>) for an integral type, while
in C++ wchar_t is a keyword.

10.4. UNICODE SUPPORT IN C AND C++ 55

Another portability problem is that a 32-bit wide wchar_t type and
its supporting functions might use UTF-32, or they might use a non-
Unicode encoding. For example, whether or not UTF-32 is used by
wchar_t on Solaris depends on a user-speci�ed locale setting, and incor-
rectly assuming that UTF-32 is always used can result in application
bugs.3

10.4.2 Use of Third-party Unicode Libraries

Having an operating system or programming language provide built-in
support for Unicode is desirable, but it is not strictly necessary. This
is because there are third-party libraries (both open- and closed-source)
that provide Unicode support. However, these libraries tend to be many
MB in size. For example, the C/C++ version of the ICU4 library occu-
pies about 22MB when built for Linux. Libraries that implement Uni-
code are large because they provide a lot of functionality that is driven
by large tables. For example:

� The library must provide a set of properties for each Unicode code
point. The properties include the o�cial human-readable name for
the code point and its category (an upper-case letter, a lower-case
letter, a digit, a punctuation character, and so on). If it is an
upper-case letter, then the code point of the corresponding lower-
case letter is stored (and vice versa); that information is required
to implement utility functions such as toUpper() and toLower().

� The library might also provide tables to support transcoding (see
Section 10.2.4 on page 51) between Unicode and other character
set encodings. For example, ICU provides over 300 transcoding
tables.

Con�g4Cpp could be modi�ed so that it uses ICU (or some other
Unicode library). Doing that would provide Con�g4Cpp with portable
Unicode support. However, Currently, the Con�g4Cpp library occupies
a few hundred KB. Modifying Con�g4Cpp to use ICU would add an
extra 22MB to its memory footprint. That increase in required memory
may be acceptable on many desktop and server machines, but it would
make Con�g4Cpp too heavyweight for use in embedded systems.

3http://defect.opensolaris.org/bz/show_bug.cgi?id=11076#c14
4ICU (International Components for Unicode) is an open-source library, available

in C/C++ and Java �avours. It is hosted at http://site.icu-project.org/.

56 CHAPTER 10. INTERNATIONALISATION

10.4.3 UTF-8, UTF-16 or UTF-32?

As a thought experiment, let's assume we decide to modify Con�g4Cpp
to support UTF-32. Obviously, the public API of Con�g4Cpp will
have to change. For example, the signatures of the insert<type>() and
lookup<type>() operations will change to accept UTF-32 strings rather
than 8-bit strings (and those UTF-32 strings would then be stored in
the internal hash tables).

The UTF-32 version of Con�g4Cpp will be convenient for program-
mers who are developing applications that use UTF-32. However, it will
not be convenient for programmers who work with UTF-16 or UTF-8.
Such programmers will have to frequently transcode (that is, convert)
between UTF-32 strings (used by Con�g4Cpp) and UTF-8 or UTF-16
strings (used by other parts of their applications). The details of how
to transcode between UTF-8, UTF-16 and UTF-32 can be found eas-
ily with an Internet search, so implementing such transcoding functions
will not be di�cult. However, there are two problems. First, littering
application code with calls to those transcoding functions will decrease
code readability and maintainability. Second, repeated transcoding will
impose a performance overhead.

Those two problems (decreased readability and a performance over-
head) are not unique to using UTF-32. Those same problems will arise
whenever di�erent parts of an application use di�erent character encod-
ings. So, it doesn't really matter if Con�g4Cpp uses UTF-8, UTF-16,
UTF-32 or a locale-speci�ed encoding: the encoding used by Con�g4Cpp
will be convenient for some application developers, and inconvenient for
others.

The lack of an �obviously right� Unicode encoding choice a�ects
C/C++ applications because those language speci�cations do not de-
�ne built-in support for Unicode. This issue does not arise in, say, Java,
because the designers of Java chose to standardise on a speci�c Unicode
encoding.

10.4.4 Approach Currently Used in Con�g4Cpp

I do not have su�cient Unicode experience to be able to make an in-
formed decision about which character encoding would provide the �lesser
of all evils� for use in Con�g4Cpp. Because of this, I decided to use only
the features available in the standard C library. This works as follows.

� All the operations in Con�g4Cpp's public API work with C-style

10.4. UNICODE SUPPORT IN C AND C++ 57

strings, that is, char*. Con�g4Cpp assumes those strings are en-
coded according to the locale in e�ect, which might be a single-byte
encoding (for example, ASCII or ISO-Latin-N) or a multi-byte en-
coding (for example, UTF-8).

� The standard C library provides functions, such as isalpha() and
isdigit() to determine the category of a char. Those functions
work reliably for a single-byte encoding. However, to deal with
the possibility of a multi-byte encoding, it is necessary to use
mbstowcs() to transcode the stream of char into a stream of wchar_t
and then use iswalpha() and iswdigit() to check the category of
a character. That approach is used by Con�g4Cpp's lexical anal-
yser so that it can correctly identify the characters permitted in
identi�ers.

� Once the lexical analyser has identi�ed a (potentially multi-byte)
character's category, it discards the wchar_t. The name=value
entries in Con�g4Cpp's hash tables are stored as C-style strings,
that is, as null-terminated arrays of char. The encoding used in
those strings is the encoding speci�ed by the locale in e�ect.

The approach described above is convenient for application developers
who work with C-style strings. It is also convenient for developers who
know that the locale uses the UTF-8 encoding. Developers who pre-
fer, say, UTF-16 or UTF-32 will have to transcode between the locale's
encoding and their preferred encoding.

I do not claim that this approach is ideal. Rather, I view it as a tem-
porary measure until a better approach can be determined. In particular,
I hope that the open-sourcing of Con�g4* will result in internationalisa-
tion experts within the open source community o�ering advice on how
to improve this aspect of Con�g4Cpp.

58 CHAPTER 10. INTERNATIONALISATION

Chapter 11

Localisation

11.1 Introduction

Currently, Con�g4* does not support localisation. In particular, error
messages embedded in exceptions are hard-coded in English. Con�g4*
would be more user-friendly for non-English speakers if such error mes-
sages could be provided in the language speci�ed by the locale in e�ect.

11.2 One Possible Approach for Localisation

I do not have any experience of localising software applications. From the
little I have read on the subject, I have formed the following (possibly
incorrect) assumptions about how localisation might be introduced to
Con�g4Cpp.

First, we need to (somehow) add Unicode support to Con�g4*. In
particular, we need: (1) the ability to store a collection of strings in
a Unicode encoding, that is, one of UTF-8, UTF-16 or UTF-32; and
(2) the ability to transcode those strings into the character encoding of
the current locale.

Second, we need a data store that contains parameterised error mes-
sages (written as Unicode strings) in multiple languages. If we provide
Unicode support in Con�g4*, then it might be possible to use an em-
bedded con�guration �le as the data store.1 As an example, an error

1A con�guration �le could be embedded in the Con�g4* library via the
config2cpp-nocheck utility (C++) or "classpath#path/to/file.cfg" (Java).

59

60 CHAPTER 11. LOCALISATION

messages con�guration �le might be in the format shown in Figure 11.1.

Figure 11.1: Hypothetical error messages localisation �le

#--------

Parameterised error messages in English

#--------

en {

1 = "%%s1, line %%i1: expecting ’;’ near ’%%s2’";

2 = "%%s1, line %%i1: expecting ’=’, ’?=’ or ’{’ near ’%%s2’";

...

}

#--------

Parameterised error messages in French

#--------

fr {

1 = "%%s1, ligne %%i1: j’attendais ’;’ près de ’%%s2’";

2 = "%%s1, ligne %%i1: j’attendais ’=’, ’?=’ ou ’{’ près de ’%%s2’";

...

}

... # Scopes for other languages

The parameterised text for, say, error 2 in the current locale would
be obtained as follows:

language = ...; # extract the language code from the locale

errMsg = cfg.lookupString(language, "2");

Then all the string place holders (such as "%s1" and "%s2") and all the
integer place holders (such as "%i1") in the parameterised error message
would be replaced with values from an array of strings and an array of
integers. The resulting string could then be used as a localised error
message when throwing an exception.

An interesting aspect of the above proposal is that Con�g4* would
store localised messages in Con�g4* format. Unless care was taken, this
might introduce a bootstrapping problem in building Con�g4*. Obvi-
ously, that is a drawback of the proposal. A bene�t of the proposal is that
Con�g4* would not rely on a third-party localisation library. Avoiding
reliance on third-party libraries can keep down the memory requirements
of Con�g4*.

Bibliography

[Ray99] Eric S. Raymond. The Cathedral & the Bazaar. O'Reilly, 1999.
www.catb.org/∼esr/writings/cathedral-bazaar/cathedral-
bazaar/.

[Sho04] Jim Shore. Fail fast. IEEE Software, pages 21�25, Sept/Oct
2004. www.martinfowler.com/ieeeSoftware/failFast.pdf.

61

