
Config4
Getting Started Guide

Version 1.2 30 September 2021

Ciaran McHale

www.con�g4star.org

http://www.config4star.org

Availability and Copyright

Availability

The Con�g4* software and its documentation (including this manual)
are available from www.con�g4star.org. The manuals are available in
several formats:

� HTML, for online browsing.

� PDF (with hyper links) formatted for A5 paper, for on-screen read-
ing.

� PDF (without hyper links) formatted 2-up for A4 paper, for print-
ing.

Copyright

Copyright© 2011�2021 Ciaran McHale (www.CiaranMcHale.com).

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation �les (the �Software�),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

� The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

� THE SOFTWARE IS PROVIDED �AS IS�, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

http://www.config4star.org
http://www.CiaranMcHale.com

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTIONWITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Contents

1 Introduction 1

1.1 What is Con�g4*? . 1

1.2 Why Might You Want to Use Con�g4*? 1

1.2.1 Bene�ts for Users 2

1.2.2 Bene�ts for Developers 2

1.3 The Collection of Con�g4* Manuals 3

1.4 Structure of this Manual 4

1.5 Obtaining and Installing Con�g4* 4

I Overview 5

2 Overview of Con�g4* Syntax 7

2.1 Comments, Variables and Scopes 7

2.2 Copying Default Values 8

2.3 Including Other Files . 9

2.4 Including the Output of Commands 9

2.5 Accessing the Environment 10

2.6 Temporary Variables . 11

2.7 The @if-then-@else Statement 11

2.8 Conditional @include and @copyFrom 12

2.9 Append Assignment . 13

2.10 Conditional Assignment 14

2.11 Centralizable and Adaptive Con�guration 14

2.12 The uid- pre�x . 15

2.13 Summary . 17

i

3 Overview of the Con�g4* API 19

3.1 Introduction . 19
3.2 Parsing Con�guration Files 21
3.3 Accessing Con�guration Variables 21
3.4 Scoped Names . 22
3.5 Presetting Con�guration Variables 22
3.6 Variations of parse() . 24

3.6.1 Parsing Centralized Con�guration 24
3.6.2 Parsing Embedded Con�guration 25
3.6.3 Using Fallback Con�guration 25

3.7 Default Values . 27
3.8 Listing the Contents of a Scope 27

3.8.1 Local and Fully-scopes Names 28
3.8.2 Determining the Type of an Entry 29
3.8.3 Filtering Results with Patterns 29

3.9 Working with Uid entries 29
3.9.1 Expanded and Unexpanded Names 29
3.9.2 The uidEquals() Operation 30
3.9.3 Processing Uid Entries in Sequence 30

3.10 Schema Validation . 31
3.10.1 Informative Error Messages 34
3.10.2 Schemas for Uid Entries 35

3.11 Summary . 35

4 Comparison with Other Technologies 37

4.1 Introduction . 37
4.2 Command-line Options & Environment Variables 37
4.3 Writing Your Own Con�guration Parser 38
4.4 Java Properties Files . 39

4.4.1 Unwanted Whitespace at the End of a Line 40
4.4.2 Lack of Syntax Checking 40
4.4.3 Semantically Poor 41
4.4.4 Type-unsafe Lookup API 42

4.5 Platform-speci�c Con�guration Files 42
4.6 XML-based Con�guration Files 43

4.6.1 Verbosity . 43
4.6.2 Limited Functionality 45
4.6.3 Checking the Correctness of Input Files 45
4.6.4 Memory Usage . 46

4.7 A Critique of Con�g4* . 46

ii

4.8 Summary . 47

II Infrastructure 49

5 Con�g4* Security 51

5.1 The Need for Security . 51
5.2 The Con�g4* Security Mechanism 52
5.3 The Default Security Policy 52
5.4 Overriding the Default Security Policy 54
5.5 Summary . 55

6 The config2cpp and config2j Utilities 57

6.1 Introduction . 57
6.2 Basic Operation . 57
6.3 Using the Generated Class 60
6.4 Tweaking the Generated Schema 60
6.5 Summary . 62

7 The config4cpp and config4j Utilities 65

7.1 Introduction . 65
7.1.1 Basic Operation 65
7.1.2 Commonly Used Options 66

7.2 The parse Command . 68
7.3 The validate Command 69
7.4 The dump Command . 72
7.5 The dumpSec Command 74
7.6 The print Command . 74
7.7 The type Command . 75
7.8 The slist and llist Commands 76
7.9 Summary . 78

III Full Details of Syntax 79

8 Con�guration File Syntax 81

8.1 Introduction . 81
8.2 Comments . 81
8.3 Strings . 81
8.4 Identi�ers . 83
8.5 Assignment Statements 84

iii

8.6 Scopes . 85
8.7 The @include Statement 86
8.8 The @copyFrom Statement 87
8.9 The @if-then-@else Statement 89
8.10 The @error Statement . 90
8.11 The @remove Statement 90
8.12 Functions . 91

8.12.1 Querying the Operating System 92
8.12.2 Accessing Environment Variables 92
8.12.3 Executing External Commands 92
8.12.4 Manipulating Strings and Lists 93
8.12.5 Files and Directories 94
8.12.6 Miscellaneous Functions 95

9 The Con�g4* Schema Language 99

9.1 Introduction . 99
9.2 Syntax . 100

9.2.1 Identi�er Rules . 100
9.2.2 The @optional and @required Keywords 102
9.2.3 De�ning a New Type 102
9.2.4 Available Schema Types 103

9.2.4.1 String-based Types 103
9.2.4.2 List-based Types 106

9.2.5 Using String-based Arguments 108
9.2.6 Ignore Rules . 109

9.3 Using Code to De�ne Schema Types 111
9.4 Summary . 111

IV E�ective Use of Con�g4* 113

10 Best Practices 115

10.1 Introduction . 115
10.2 Use a Top-level Scope for Each Application 115
10.3 Naming Convention for Variables 116
10.4 Fail-fast Con�guration . 118
10.5 Zero Con�guration . 118
10.6 Schema Validation for Fallback Con�guration 119
10.7 Working with Lists . 120
10.8 Use a Wrapper Class around Con�g4* 122

iv

10.9 Summary . 123

11 Demonstration Applications 125

11.1 Introduction . 125
11.2 The simple-encapsulation Demo 125
11.3 The encapsulate-lookup-api Demo 126
11.4 The log-level Demo . 127
11.5 The recipes Demo . 128
11.6 The extended-schema-validator Demo 129
11.7 Summary . 130

Bibliography 131

v

vi

Chapter 1

Introduction

1.1 What is Con�g4*?

Con�g4* (pronounced �con�g for star�) is the generic name for a family
of libraries that provides a powerful, easy-to-use parser for con�guration
�les. Initially, this family has just two members: Con�g4Cpp (for C++)
and Con�g4J (for Java). I hope that, over time, the family will grow to
support other languages, including C and C#.

Many popular scripting languages�such as Lua, Perl, Python, Ruby
and Tcl�are implemented in C. Thus, Con�g4C (for C) will be useful
for C programmers, while also paving the way for scripting languages to
parse Con�g4* con�guration �les. Likewise, one language supported on
Microsoft's .NET platform can use functionality implemented in another
.NET-supported language. Because of this, a port of Con�g4* to, say,
C# would enable all .NET-based applications to use Con�g4*.

Hence the name of this overall project is Con�g4*. The �*� in the
name denotes a wildcard that can expand to include many di�erent
languages.

1.2 Why Might You Want to Use Con�g4*?

There are already many con�guration technologies in widespread use.
For example, Microsoft Windows provides a centralized registry; Java
provides properties �les; and it is common in scripting languages to store
con�guration information in the syntax of the scripting language. When

1

2 CHAPTER 1. INTRODUCTION

people need a platform- and programming language-agnostic con�gura-
tion format, increasingly they choose XML. This raises the question:
what has Con�g4* got to o�er that isn't already provided by an existing
con�guration mechanism? The answer is: a lot.

1.2.1 Bene�ts for Users

Con�g4* o�ers several bene�ts for end users.
First, the syntax used in Con�g4* con�guration �les is much more

user-friendly than, say, Java properties �les or XML �les.
Second, Con�g4* makes it easy for users to �nd and correct mistakes

in con�guration �les. For example, Con�g4* provides a schema valida-
tor that can produce easy-to-understand error messages if con�guration
variables have misspelt names or bad values.

Third, users can choose the granularity they want for grouping con-
�guration information.

� A user can have one con�guration �le for an application, split an
application's con�guration over several �les, or have one �le that
contains con�guration information for multiple (possibly related)
applications.

� Con�g4* can adapt con�guration information based on the envi-
ronment in which an application is running. This means an ad-
ministrator does not have to maintain multiple copies of an ap-
plication's con�guration �le, where each copy has mostly common
information but also a few details speci�c to a particular user,
hostname or operating system. Instead, it is possible to maintain
a single con�guration �le that contains the common information
plus the details speci�c to each user, computer or operating system.

Fourth, Con�g4* can parse con�guration information from an arbi-
trary source. Most commonly, a user will store con�guration information
in a �le, but Con�g4* can obtain con�guration information from, say,
a web server or a database. This provides the option of centralizing
con�guration information if you are deploying an application on several
computers that do not have access to a shared �le system.

1.2.2 Bene�ts for Developers

Con�g4* o�ers several bene�ts for developers.

1.3. THE COLLECTION OF CONFIG4* MANUALS 3

First, the Con�g4* programming API is not easy to use; it is trivial
to use.

Second, Con�g4* provides a utility that makes it possible to compile
a con�guration �le into an application's executable. This is useful for
embedded systems, or where you want to embed default con�guration
values into an application so the use of an external con�guration �le
becomes optional.

Third, Con�g4* provides a viable alternative to XML as a data �le
format. The Con�g4* library is an order of magnitude smaller than pop-
ular XML parser libraries, it parses input �les speedily and the resulting
in-memory representation is more compact than a DOM tree. In addi-
tion, Con�g4* provides user-friendly error messages, easy-to-use schema
validation of input, and a programmer-friendly API.

Finally, one of the goals of the Con�g4* project is to provide highly
portable implementations for many popular programming languages.
This is important because many projects start out by using just a sin-
gle programming language on one operating system but, over time, end
up using several languages and/or operating systems. For example, a
client-server system might initially be implemented in C++. Then you
decide to re-implement the client part in Java so it can provide a cross-
platform graphical user interface (GUI). Then you use a scripting lan-
guage to write some report-generating utilities for the system. In such
an environment, being able to process one set of con�guration �les from
multiple languages is a great help.

1.3 The Collection of Con�g4* Manuals

Con�g4* documentation is provided as a collection of manuals.

Con�g4* Getting Started Guide. This is the manual you are cur-
rently reading. It provides an introduction to Con�g4* for both
users and developers of Con�g4*-based applications.

Con�g4* Practical Usage Guide. This manual provides useful ad-
vice and suggestions for developers on practical ways to use Con-
�g4* in a wide variety of projects.

Con�g4* Maintenance Guide. This manual provides useful back-
ground information for people who want to maintain the source
code of Con�g4* implementations or implement Con�g4* in an-
other programming language.

4 CHAPTER 1. INTRODUCTION

Con�g4* C++ API Guide. This manual provides a tutorial and ref-
erence for C++ programmers.

Con�g4* Java API Guide. This manual provides a tutorial and ref-
erence for Java programmers.

1.4 Structure of this Manual

This manual is structured as follows.
Part I provides an overview of Con�g4*'s capabilities for both users

and developers.
Part II discusses Con�g4*'s supporting infrastructure, including its

security mechanism and command-line utilities.
Part III provides provides comprehensive details on the syntax used

in Con�g4* �les and also the syntax used in its schema language.
Part IV provides tips on how to use Con�g4* in your projects.

1.5 Obtaining and Installing Con�g4*

The main website of Con�g4* is www.con�g4star.org. Some other do-
mains (www.con�g4cpp.org and www.con�g4j.org) redirect to the main
website.

You can download Con�g4Cpp and Con�g4J from the Con�g4* web-
site. The downloads are in the form of a ZIP �le. The downloads contain
C++ or Java source code plus manuals (in PDF and LATEX form).

You should read the top-level README.txt �le in a distribution for
instructions on how to compile the Con�g4* source code.

http://www.config4star.org
http://www.config4cpp.org
http://www.config4j.org

Part I

Overview

5

Chapter 2

Overview of Con�g4*

Syntax

This chapter provides an overview of the syntax used in Con�g4* con�gu-
ration �les. A complete de�nition of the syntax is provided in Chapter 8.

2.1 Comments, Variables and Scopes

Figure 2.1 provides a simple example of a Con�g4* con�guration �le.
Comments, like the one shown in line 1, start with "#" and continue

until the end of the line. Most of the lines in a con�guration �le contain
assignment statements. These are of the form name=value, where the
value can be a string (line 2) or a list of strings (line 4). You can use
the "+" operator to concatenate both strings (line 3) and lists (line 6).
Strings are usually delimited between double quotes.

There are two ways to write a string. The �rst way (which is il-
lustrated in Figure 2.1) is as a sequence of characters enclosed within
double quotes. Within such a string, "%" acts as an escape character.
For example, %n denotes a newline character, and %" denotes a double
quote.

The second way to write a string is as a (possibly multi-line) sequence
of characters enclosed between <% and %>. No escape sequences are recog-
nised between <% and %>. The <%...%> notation is useful if you want to
embed, say, a code segment in a con�guration �le. You can combine
both forms of string by using the string concatenation ("+") operator.

7

8 CHAPTER 2. OVERVIEW OF CONFIG4* SYNTAX

Figure 2.1: Example con�guration �le

1 # this is a comment

2 name = "Fred";

3 greeting = "hello, " + name;

4 some_names = ["Fred", "Mary", "John"];

5 more_names = ["Sue", "Ann", "Kevin"];

6 all_names = some_names + more_names;

7 server.defaults {

8 timeout = "2 minutes";

9 log {

10 dir = "C:\foo\logs";

11 level = "0";

12 }

13 }

14 foo_srv {

15 @copyFrom "server.defaults";

16 log.level = "1";

17 }

18 bar_srv {

19 @copyFrom "server.defaults";

20 timeout = "30 seconds";

21 }

A con�guration �le can contain named scopes (lines 7, 9, 14, and 18
in Figure 2.1). Scopes can be nested (line 9) and re-opened. The scoping
operator is ".". For example, the name log.level refers to a variable
called level inside a scope called log. You do not have to explicitly open
a scope to de�ne a variable or a nested scope within it. For example,
line 7 opens the server.defaults scope without opening the outer server
scope. Likewise, line 16 de�nes log.level without explicitly opening the
log scope.

2.2 Copying Default Values

All keywords (for example, @include, @if and @copyFrom) start with the
"@" symbol: this ensures there can never be a clash between the name of
a keyword and the name that you might wish to use for a con�guration
variable or scope.

The @copyFrom statement (lines 15 and 19 in Figure 2.1) copies the
entire contents (variables and nested scopes) of the speci�ed scope into

2.3. INCLUDING OTHER FILES 9

the current scope. This provides a simple, yet e�ective, reuse mechanism.
For example, if several applications use similar con�guration values then
you can put common values into one scope and then use the @copyFrom

statement to copy these into application-speci�c con�guration scopes. It
is not an error to assign a new value to an existing variable. This makes
it possible to override default values obtained via a @copyFrom statement.

2.3 Including Other Files

An @include statement (not shown in Figure 2.1) includes the contents
of another con�guration �le into the current one. For example:

@include "/tmp/foo.cfg";

You can use string concatenation to form the �le name. For example:

@include fileToDir(configFile()) + "/subsystem1.cfg";

@include fileToDir(configFile()) + "/subsystem2.cfg";

@include fileToDir(configFile()) + "/subsystem3.cfg";

This example also uses fileToDir(configFile()), which is a combination
of two built-in function calls that returns the name of the directory
in which the con�guration �le being parsed resides. This technique of
combining the @include command with these built-in functions enables
you to split a (potentially) large amount of con�guration information
across several smaller �les. Doing this can simplify the maintenance of
con�guration �les.

Con�g4* has many built-in functions. You can �nd a complete list
of them in Section 8.12 on page 91. In Section 2.2, I mentioned that
all keywords are pre�xed with "@" to prevent the possibility of a clash
between a keyword and the name that you might wish to use for a
con�guration variable or scope. For the same reason, all functions are
su�xed with "(". Thus, fileToDir(is the start of a function call, but
fileToDir is the name of a variable or scope.

2.4 Including the Output of Commands

The @include command can include not just �les, but also the output
resulting from executing arbitrary shell commands. For example, the
curl utility (http://curl.haxx.se) is a command-line tool that can output
the contents of a speci�ed URL, such as a web page or a �le at an FTP

http://curl.haxx.se

10 CHAPTER 2. OVERVIEW OF CONFIG4* SYNTAX

site. If you have curl installed on your computer, then a con�guration
�le can have @include commands similar to those shown below.1

@include "exec#curl -sS http://localhost/someFile.cfg";

@include "exec#curl -sS ftp://localhost/someFile.cfg";

As these examples illustrate, if the argument to an @include statement
starts with "exec#" then the argument is executed as a shell command
and the standard output from that command is included.

The ability to execute arbitrary commands is very �exible, but it
poses a security risk. For example, we need to guard against a malicious
person adding something like the following to a con�guration �le on
Windows.

@include "exec#del /F /S /Q C:\";

Such a command would delete everything on the C: drive of the computer
(somewhat similar to "exec#rm -rf /" on UNIX). Chapter 5 discusses
the mechanism that Con�g4* provides to guard against such security
threats.

2.5 Accessing the Environment

You can access environmental information in a con�guration �le. For
example, you can use getenv("FOO_HOME") to access an environment vari-
able called FOO_HOME.

install_dir = getenv("FOO_HOME");

You can use the replace() function to perform a search-and-replace, as
the example below demonstrates.

install_dir = replace(getenv("FOO_HOME"), "\", "/");

In the above example, the replace() function replaces all occurrences of
"\" with "/" in the speci�ed string. This is a useful tactic when you run
an application on Windows that insists on dealing with UNIX-style �le
and directory names.

You can use the exec("command") function to execute an external
command and capture its standard output. For example, on both UNIX
and Windows, the hostname command prints the name of the computer.
You can access this information as shown in the following example:

1By default, curl prints diagnostics to standard error. The -s option instructs
curl to be silent, but unfortunately, this option means that curl does not print error
messages either. You can use -sS to instruct curl to print error messages but no other
diagnostics.

2.6. TEMPORARY VARIABLES 11

url = "http://" + exec("hostname") + ":8080/"

log_dir = "/net/" + exec("hostname") + "/logs";

2.6 Temporary Variables

Sometimes you may want several variables to have values that share a
common pre�x. Rather than explicitly (re)stating the common pre�x
several times, you might decide to assign it to a temporary variable, use
that temporary variable to help you de�ne the �real� variables, and then
�nally @remove the temporary variable. The example below illustrates
this.

_install_dir = getenv("FOO_HOME");

bin_dir = _install_dir + "/bin";

etc_dir = _install_dir + "/etc";

log_dir = _install_dir + "/logs";

@remove _install_dir;

As the above example illustrates, a convention is that the name of a tem-
porary variable starts with an underscore. The @remove statement does
what its name suggests: it removes the speci�ed con�guration variable.

You may wonder what is the point of removing a variable: why not
just leave _install_dir in existence? The answer is that by insisting
a con�guration �le contain only required variables, an application can
make use of a schema validator that can perform extensive error checking
on the contents of a con�guration �le. I will discuss schema validation
later (Section 3.10 on page 31).

2.7 The @if-then-@else Statement

By themselves, the exec() and getenv() functions (discussed earlier in
this chapter) are of limited use. However, they become much more useful
when combined with an @if-then-@else statement. You can see some
examples of this is in Figure 2.2.

To reduce the chances of a mis-con�gured client application on a test
machine accidentally communicating with a server application in produc-
tion, some organizations use one set of server port numbers in testing,
and a di�erent set of server port numbers in production. Traditionally,
this separation was accomplished by having one con�guration �le for
test machines, and having another con�guration �le for production ma-
chines. However, the cascading @if-then-@else statement at lines 4�14

12 CHAPTER 2. OVERVIEW OF CONFIG4* SYNTAX

Figure 2.2: Con�guration �le with advanced features

1 production_hosts = ["pizza", "pasta", "zucchini"];

2 test_hosts = ["foo", "bar", "widget", "acme"];

3

4 @if (exec("hostname") @in production_hosts) {

5 server_x.port = "5000";

6 server_y.port = "5001";

7 server_z.port = "5002";

8 } @elseIf (exec("hostname") @in test_hosts) {

9 server_x.port = "6000";

10 server_y.port = "6001";

11 server_z.port = "6002";

12 } @else {

13 @error "This is not a production or test machine";

14 }

15 if (osType() == "windows") {

16 tmp_dir = replace(getenv("TMP"), "\", "/");

17 } @else {

18 tmp_dir = "/tmp";

19 }

in Figure 2.2 shows it is possible to have a single con�guration �le that
adapts itself to its environment.

The @error statement (line 13) instructs Con�g4* to stop parsing
and instead report an error. This provides a way for a con�guration �le
to report that it is being used outside of its intended domain.

The osType() function (line 15) returns a string, such as "windows"

or "unix", that indicates the host operating system. If you want to check
which variant of UNIX is being used then you can use exec("uname").

2.8 Conditional @include and @copyFrom

By default, @include reports an error if the speci�ed �le does not exist.
However, if you place @ifExists at the end of an @include statement,
then @include does not complain about a non-existent �le.

@include "/path/to/foo.cfg" @ifExists;

The conditional @include provides a way for an application's con�gura-
tion �le to set default values and then include an optional user-speci�c
con�guration �le to override default values. For example, the con�gura-

2.9. APPEND ASSIGNMENT 13

tion �le for a program called foo running on UNIX might be structured
as shown below.2

Set default configuration values

...

Now optionally include user-specific overrides

@include getenv("HOME") + "/.foo.cfg" @ifExists;

You can use an "@ifExists" clause not just with an @include state-
ment, but also with @copyFrom, as shown below.

override.pizza { ... }

override.pasta { ... }

foo_srv {

Set default values

...

Modify some values for particular hosts

@copyFrom from "override." + exec("hostname") @ifExists;

}

2.9 Append Assignment

The append assignment statement, which uses the "+=" operator, was
introduced in version 1.2 of Con�g4*.

greeting = "Hello";

greeting += ", world";

The second line in the above example is equivalent to the line below.

greeting = greeting + ", world";

The append assignment statement is often used in conjunction with
the "@copyFrom" command, as shown below.

app.defaults {

options = ["default", "options"];

...

}

my_app {

@copyFrom "app.defaults";

options += ["extra options"];

}

2In UNIX, the HOME environment variable speci�es the �home� directory for a user,
which is where a user normally stores personal �les. By convention, the name of a
con�guration �le for an application stored in this directory starts with ".", and is
followed by the name of the application.

14 CHAPTER 2. OVERVIEW OF CONFIG4* SYNTAX

2.10 Conditional Assignment

Con�g4* provides a way for an application to integrate command-line
options with a con�guration �le. To illustrate this, consider an applica-
tion that is started in the following manner.

myApp.exe -set username Fred -set password fgTR742 -cfg foo.cfg

The application could be written to perform the following steps during
initialisation.

1. The application creates an (initially empty) con�guration object.

2. The application examines its command-line options. Whenever it
encounters an option of the form "-set name value", it inserts that
name-value pair to the con�guration object.

3. Finally, the application uses the con�guration object to parse the
�le speci�ed by the "-cfg file" command-line option.

The above algorithm ensures that the command-line options processed
in step 2 become �preset� variables in the con�guration object when the
con�guration �le is parsed (step 3).

Within a con�guration �le, the ?= operator performs conditional as-
signment ; it assigns a value to a variable only if the variable does not
already have a value.

username ?= "";

password ?= "";

In this way, a con�guration �le can provide default values for some vari-
ables, and those default values can be overridden via command-line op-
tions on the application.

2.11 Centralizable and Adaptive Con�gura-

tion

Some basic capabilities of Con�g4*, for example, name=value pairs and
scopes, can be found in other con�guration technologies. However, many
of its other capabilities are not so common.

� You can use getenv() to access a named environment variable, such
as HOME or USERNAME. You can also use osType() to determine the
operating system's type.

2.12. THE UID- PREFIX 15

� You can use exec() to capture the output from executing an ex-
ternal command, such as hostname or (on UNIX) uname.

� You can pass the results of getenv(), exec() or osType() as argu-
ments to @include or @copyFrom statements, or use them in condi-
tions in @if-then-@else statements.

These capabilities mean that one Con�g4* �le can contain con�guration
for multiple users, running an application on multiple computers and
multiple operating systems. Or to put it another way: a con�guration
�le can �adapt� itself to its environment. I call this ability adaptive

con�guration.

The ability of Con�g4* to parse not just a con�guration �le but also
the output of external commands, such as curl, makes it possible for an
organization to centralize the adaptive con�guration �les of Con�g4*-
enabled applications. Such centralization can signi�cantly reduce ad-
ministration overheads, especially when a large organization deploys an
application on hundreds, thousands, or even tens of thousands, of com-
puters.

2.12 The uid- pre�x

The discussion in this chapter so far has focussed on using Con�g4*
to store con�guration information, which, in essence, is simple data in
the form of name=value pairs, optionally organised into scopes. In this
section, I discuss an additional feature of Con�g4* that makes it possible
to store more complex data in Con�g4* �les, thus greatly expanding the
potential range of uses of Con�g4*.

Let's assume you want to store some information about employees in
a con�guration �le. You might try writing the following.

employee { name = "John Smith"; ... }

employee { name = "Jane Doe"; ... }

However, that will not work. This is because the second occurrence of
the employee scope re-opens the existing scope, so the details of Jane Doe
overwrite those of John Smith. You could work around this by using a
unique number as a su�x on the name of each scope.

employee_1 { name = "John Smith"; ... }

employee_2 { name = "Jane Doe"; ... }

16 CHAPTER 2. OVERVIEW OF CONFIG4* SYNTAX

This will work, but you have to keep track of the numbers that have
been used already to ensure you do not accidentally reuse one of those
numbers in the name of a new scope. Con�g4* eliminates this burden
by treating an identi�er (that is, the name of a scope or variable) in a
special way if it starts with "uid-"; uid is an abbreviation for unique
identi�er. Consider the following �le.

uid-employee { name = "John Smith"; ... }

uid-employee { name = "Jane Doe"; ... }

Con�g4* keeps a counter that starts at zero and is incremented for
each identi�er starting with "uid-". Con�g4* automatically renames
these identi�ers so that the counter (expressed as a nine-digit number)
is embedded in them. For example, the �rst occurrence of uid-employee
might be renamed as uid-000000000-employee, the next occurrence re-
named as uid-000000001-employee, the next occurrence renamed as uid-
000000002-employee and so on.3

You might be wondering why the unique number is always expressed
as nine digits with leading zeros. The reason has to do with how Con�g4*
is implemented. When Con�g4* parses a con�guration �le it stores all
the entries (that is, variables and scopes) in hash tables. Hash tables
provide a fast lookup mechanism but they do not preserve the order in
which the entries were originally de�ned in the input �le. However, the
API of Con�g4* makes it easy for a program to get a sorted list of entries.
Expressing uid numbers as nine digits with leading zeros guarantees that
a sorted list of entries contains all the uid entries in the order in which
they appeared in the input �le. This makes it possible for a program to
process uid entries in their original order, if desired.

As a slightly contrived example for the use of uid entries, consider
a �le that stores recipes, like that in Figure 2.3. Each recipe is stored
in its own uid-recipe scope. I do not care about the order of recipes,
but the "uid-" pre�x frees me from the burden of having to think of a
unique name for the scope of each recipe. Within a uid-recipe scope,
the relative order of the ingredients and name entries is not important
so they do not have a "uid-" pre�x. However, each step in the recipe
must be performed in strict sequence so they have a "uid-" pre�x.

3The use of a nine-digit number means that Con�g4* can cope with up to 109 uid
entries. This number is what most English-speaking countries call a billion, but many
other countries call a thousand million (and they use the term billion to mean 1012,
that is, a million million): http://en.wikipedia.org/wiki/Long_and_short_scales.
In the extremely unlikely event that you exceed the limitation of 109 uid entries,
the Con�g4* Maintenance Guide explains how you can make simple changes to the
source code of Con�g4* to increase the limit.

http://en.wikipedia.org/wiki/Long_and_short_scales

2.13. SUMMARY 17

Figure 2.3: File of recipes

uid-recipe {

name = "Tea";

ingredients = ["1 tea bag", "cold water", "milk"];

uid-step = "Pour cold water into the kettle";

uid-step = "Turn on the kettle";

uid-step = "Wait for the kettle to boil";

uid-step = "Pour boiled water into a cup";

uid-step = "Add tea bag to cup & leave for 3 minutes";

uid-step = "Remove tea bag";

uid-step = "Add a splash of milk if you want";

}

uid-recipe {

name = "Toast";

ingredients = ["Two slices of bread", "butter"];

uid-step = "Place bread in a toaster and turn on";

uid-step = "Wait for toaster to pop out the bread";

uid-step = "Remove bread from toaster and butter it";

}

Although most readers will not be interested in using Con�g4* to
store recipes, the issues I described in that example often occur in real-
world systems. A typical case is Ant (http://ant.apache.org), which is a
popular build system for Java-based applications (in much the same way
that make is a popular build system for C and C++ applications). Ant
reads a build speci�cation from an XML �le. The build �le contains,
among other things, a collection of target elements that are analogous
to a �recipe� for compiling or packaging a unit of software. Within each
target element there is an ordered collection of tasks, which are analo-
gous to the ordered �steps� within a recipe. A target may also have a list
of targets upon which it depends; in Con�g4* this could be expressed as
a non-uid variable, similar to ingredients in Figure 2.3.

2.13 Summary

Con�g4* has several features, such as name=value pairs, scopes and
an @include statement, that are common to many other con�guration
technologies. However, Con�g4* provides additional capabilities that are
more rare, and which are very useful.

� Adaptable con�guration. A Con�g4* �le can use getenv(), exec()

http://ant.apache.org

18 CHAPTER 2. OVERVIEW OF CONFIG4* SYNTAX

and osType() to query its environment, and the results of these
queries can be used in @if-then-@else, @include and @copyFrom

statements. This enables a con�guration �le to adapt to its en-
vironment. In addition, conditional assignment (the ?= operator)
enables a con�guration �le to take account of command-line argu-
ments.

� Centralised con�guration. Con�g4* can parse not just a con�gura-
tion �le, but also the output of executing a command. Combining
this capability with curl makes it feasible to store a con�guration
�le in a centralised location, such as a web server. Such centraliza-
tion can signi�cantly reduce administration overheads, especially
when a large organization deploys an application on hundreds or
thousands of computers.

� Uid entries. The "uid-" pre�x makes it possible for Con�g4* to be
used to store not just simple con�guration �les but also complex,
structured data in which there may be multiple items of a similar
nature or guaranteed ordering of items is important.

This chapter has presented an overview of the syntax used in a Con-
�g4* con�guration �le (you can �nd full details in Chapter 8). The next
chapter provides an overview of the API provided by Con�g4* for C++
and Java programmers.

Chapter 3

Overview of the Con�g4*

API

3.1 Introduction

The C++ and Java APIs of Con�g4* are very similar, so this chapter
discusses both of them side by side. All the functionality of Con�g4Cpp
is de�ned in the config4cpp namespace. The functionality of Con�g4J is
de�ned in the org.config4j package. To illustrate the API of Con�g4*,
consider a con�guration �le that contains the following entries.

foo_srv {

timeout ?= "2 minutes";

log {

dir ?= "C:\foo\logs";

level ?= "0";

};

};

Figures 3.1 and 3.2 show examples of using Con�g4Cpp and Con�g4J
to access information in the above con�guration �le. In much of this
chapter I discuss the APIs used in these �gures.

The correct behaviour Con�g4Cpp depends on the locale being set
correctly. Because of this, it is advisable to call setlocale() before invok-
ing any Con�g4Cpp APIs. If you do this, then Con�g4Cpp will be able
to handle characters de�ned in your locale, such as European accented
characters or Japanese ideographs. If you neglect to call setlocale(),

19

20 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

Figure 3.1: Example of Using Con�g4Cpp

#include <locale.h>

#include <config4cpp/Configuration.h>

using namespace config4cpp;

...

setlocale(LC_ALL, "");

...

const char * logDir;

int logLevel, timeout;

const char * scope = "foo_srv";

Configuration * cfg = Configuration::create();

try {

cfg->parse(getenv("FOO_CONFIG"));

logDir = cfg->lookupString(scope, "log.dir");

logLevel = cfg->lookupInt(scope, "log.level");

timeout = cfg->lookupDurationSeconds(scope, "timeout");

} catch(const ConfigurationException & ex) {

cout << ex.c_str() << endl;

}

cfg->destroy();

Figure 3.2: Example of Using Con�g4J

import org.config4j.*;

...

String logDir;

int logLevel, timeout;

String scope = "foo_srv";

Configuration cfg = Configuration.create();

try {

cfg.parse(cfg.getenv("FOO_CONFIG"));

logDir = cfg.lookupString(scope, "log.dir");

logLevel = cfg.lookupInt(scope, "log.level");

timeout = cfg.lookupDurationSeconds(scope, "timeout");

} catch(ConfigurationException ex) {

System.out.println(ex.getMessage());

}

then Con�g4Cpp is likely to correctly process only characters in the 7-bit
US ASCII character set.

3.2. PARSING CONFIGURATION FILES 21

3.2 Parsing Con�guration Files

You create a con�guration object by invoking the static create() opera-
tion on the Configuration class. The newly created con�guration object
is empty initially. You can populate it by invoking the parse() operation,
which takes a �le name as a parameter. The C++ example (Figure 3.1)
calls the getenv() function to obtain the �le-name parameter from an
environment variable. For part of Java's history, it was di�cult to ac-
cess environment variables in Java applications but Con�g4J provides a
utility getenv() operation on the Configuration class to simplify such
access.1

If parse() encounters any errors, then it throws an exception of type
ConfigurationException. The C++ implementation of this class pro-
vides a c_str() operation you can use to access the exception's message.
Java developers can access the exception's message in the usual Java
way, that is, by calling getMessage(). In Java, ConfigurationException
is a runtime exception.

3.3 Accessing Con�guration Variables

Once a Configuration object has been created and populated, you can
use operations such as lookupString() and lookupList() to retrieve the
values of con�guration variables. You can see examples of this in Fig-
ures 3.1 and 3.2.

Some additional operations with names of the form lookup<Type>()

are provided that retrieve a string value and convert it to another data-
type. For example, lookupInt() converts a string value to an integer and
lookupBoolean() converts a string value to a boolean.

The lookupDurationSeconds() operation converts strings, for exam-
ple, "10 seconds" or "2.5 minutes", into an integer that denotes the du-
ration in seconds (it converts "infinite" to the integer value -1). You can
use such durations to con�gure timeout values in applications. There are
also lookupDurationMilliseconds() and lookupDurationMicroseconds()

operations in case you prefer to have the result expressed in milliseconds
or microseconds rather than in seconds.

If a lookup operation fails�for example, lookupInt()might encounter
an invalid integer�then it throws a ConfigurationException. The mes-

1Section 4.2 on page 37 explains why, before Java 1.5, it was di�cult to access
environment variables in Java, and how Con�g4J works around this di�culty.

22 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

sage contained in the exception explains what went wrong.

3.4 Scoped Names

Some Con�g4* operations take two parameters that, when combined,
specify the fully-scoped name of a con�guration variable. For example,
in C++, you can access the value of foo_srv.log.dir with the following
statement.

logDir = cfg->lookupString("foo_srv", "log.dir");

The example code in Figures 3.1 and 3.2 illustrates the intended purpose
of this approach to identifying con�guration variables. A variable, called
scope, is initialized with the name of a con�guration scope, and a con�g-
uration variable (such as log.dir) within that scope can be accessed by
passing scope and the name of the variable as parameters to an accessor
operation.

logDir = cfg->lookupString(scope, "log.dir");

Typically, the scope variable is obtained from a command-line argument.
By rerunning an application with a di�erent command-line argument,
you can change the scope used to con�gure the application. For exam-
ple, you might have one con�guration scope for running an application
without debugging diagnostics, and another scope that enables debug-
ging diagnostics. Alternatively, you might have a separate scope for each
user or for each instance of a replicated server application.

3.5 Presetting Con�guration Variables

When Con�g4* is parsing a con�guration �le, it calls insertString()

and insertList() to populate the Configuration object with name-value
pairs. You can call those operations directly in your application code.
One important reason for doing so is to populate a Configuration object
with name-value pairs obtained from command-line arguments before

parsing a con�guration �le. The Java code in Figure 3.3 illustrates how
to do this.

This tactic provides a simple way to integrate command-line options
with information in a con�guration �le. To understand why, consider the
con�guration �le shown at the start of this chapter, which is repeated
below for convenience.

3.5. PRESETTING CONFIGURATION VARIABLES 23

Figure 3.3: Java example of presetting con�guration variables

public void main(String[] args) {

String logDir;

int logLevel, timeout;

String scope = "foo_srv";

Configuration cfg = Configuration.create();

try {

//--------

// Pre-populate the configuration object from

// "-set name value" command-line options

//--------

for (int i = 0; i < args.length; i++) {

if (args[i].equals("-set") {

if (i + 2 >= args.length) {

usageError("Too few arguments after ’-set’");

System.exit(1);

}

cfg.insertString(scope, args[i+1], args[i+2]);

} else {

... // processing for other command-line options

}

}

//--------

// Parse the config file and lookup config variables.

//--------

cfg.parse(cfg.getenv("FOO_CONFIG"));

logDir = cfg.lookupString(scope, "log.dir");

logLevel = cfg.lookupInt(scope, "log.level");

timeout = cfg.lookupDurationSeconds(scope, "timeout");

} catch(ConfigurationException ex) {

System.out.println(ex.getMessage());

System.exit(1);

}

}

foo_srv {

timeout ?= "2 minutes";

log {

dir ?= "C:\foo\logs";

level ?= "0";

};

24 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

};

The use of the conditional assignment operator ("?=") within the con�g-
uration �le means that a variable will be assigned a value only if it does
not already have a value. For example, running the code shown in Fig-
ure 3.3 with the command-line option "-set log.level 2" will change
the log level from its default value of 0 to the value of 2.

3.6 Variations of parse()

Earlier in this chapter (in Section 3.2 on page 21) I said that you can
call parse() to parse a con�guration �le. Actually, Con�g4* o�ers a lot
of �exibility in parsing, as I now discuss.

3.6.1 Parsing Centralized Con�guration

Let's assume that, as shown in Figures 3.1 and 3.2, an application uses
the FOO_CONFIG environment variable to specify the location of its con�g-
uration �le. If the application is being used only by you and on only one
computer then you can store the application's con�guration information
in a �le and set FOO_CONFIG to point to this.

FOO_CONFIG=/path/to/foo.cfg

A few months later you may want to use the application on several
computers within the same o�ce. You could copy the con�guration �le
onto each of these computers but then you would end up with multiple
con�guration �les to maintain. Alternatively, if there is a web server in
your o�ce, you could move the con�guration �le to it and set FOO_CONFIG
on all the computers to retrieve this con�guration �le via curl.2

FOO_CONFIG="exec#curl -sS http://host/path/to/foo.cfg"

Recall from Section 2.11 on page 14 that the adaptable con�guration

features in Con�g4* enable a con�guration �le to adapt its contents for
di�erent computers, operating systems or users. Because of this, a single
con�guration �le stored, say, on a centralized web server can be used for
all users of the Foo application within your organization.

2The curl utility was discussed in Section 3.1 on page 20.

3.6. VARIATIONS OF PARSE() 25

3.6.2 Parsing Embedded Con�guration

There is an overloaded version of parse() that takes two parameters.
You can use this two-parameter version to parse con�guration informa-
tion that is stored in a string, as this C++ example illustrates.

const char * str = "message = \"Hello, World\";";

cfg->parse(Configuration::INPUT_STRING, str);

Constructing a con�guration string manually is tedious for two reasons.
First, as the above example illustrates, you have to escape double quotes
with a backslash. Second, compilers place limits on the maximum length
of string literals; if you wanted, say, a 50KB con�guration string, then
you would have to construct this by concatenating numerous smaller
strings.

The config2cpp and config2j command-line utilities (discussed in
Chapter 6) read an input con�guration �le and generate a C++ or Java
class that stores the contents of the con�guration �le in an instance
variable. The generated class automates the tedious escaping of double
quotes and concatenating short string literals to produce a monolithic
con�guration string. You can access this con�guration string by invoking
the public getString() operation on the generated class.

The config2cpp and config2j utilities make it easy to generate a
con�guration string that can be embedded in an application. This can
be useful in an embedded system that does not contain a �le system.

Version 1.2 of Con�g4J introduces a way to specify that the desired
con�guration �le exists on the classpath.

cfg.parse(Configuration.INPUT_CLASSPATH, "path/to/file.cfg");

This can be speci�ed in a more convenient form, as shown below.

cfg.parse("classpath#path/to/file.cfg");

This Java-speci�c capability is useful because it makes it possible to
store an embedded con�guration �le as a resource �le within a JAR �le
for an application. Doing this is more convenient than using config2j

to compile the con�guration �le into a Java �le.

3.6.3 Using Fallback Con�guration

An important use of embedded con�guration strings is to enable an
application to have default con�guration that can be overridden by an
optional con�guration �le speci�ed by, say, an environment variable or

26 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

command-line argument. A primitive way to do this is shown below in
Java syntax.

Configuration cfg = Configuration.create();

String cfgFile = cfg.getenv("FOO_CONFIG");

if (cfgFile != null) {

cfg.parse(cfgFile);

} else {

cfg.parse(Configuration.INPUT_STRING,

EmbeddedConfig.getString());

}

This method is primitive because it is an either-or approach: the con-
�guration is obtained from either a �le or an embedded string. This is
acceptable if there are only a handful of con�guration variables. How-
ever, if the application uses hundreds of con�guration variables, then
it is not convenient for a user to have to write such a large con�gura-
tion �le when she might want only a few con�guration variables to have
non-default values.

It would be preferable to allow the con�guration �le to contain just
a few variables and for the application to automatically �fallback� to an
embedded con�guration string for variables not speci�ed in the con�g-
uration �le. Con�g4* provides support for such fallback con�guration;
you can see an example of its use in Figure 3.4.

Figure 3.4: Fallback con�guration

Configuration cfg = Configuration.create();

String cfgFile = cfg.getenv("FOO_CONFIG");

if (cfgFile != null) {

cfg.parse(cfgFile);

}

cfg.setFallbackConfiguration(Configuration.INPUT_STRING,

EmbeddedConfig.getString());

Using fallback con�guration involves three steps. First, you create an
empty con�guration object. Second, you parse a con�guration source, if
the user has speci�ed one. Third, you call setFallbackConfiguration()
to apply a fallback con�guration object to the main con�guration object.
The fallback con�guration object, which contains default values for all
con�guration variables used by the application, is typically created by
invoking the getString() operation on a class that was generated by
config2cpp or config2j.

3.7. DEFAULT VALUES 27

The semantics of fallback con�guration can be understood by con-
sidering the statement below.

str = cfg.lookupString(scope, "log.level");

The lookupString() operation �rst searches in the main con�guration
object for the log.level variable in the scope speci�ed by the scope

parameter. If the variable is not found, then the operation searches in
the global scope of the fallback con�guration object for the log.level

variable. The global scope is used in the fallback con�guration object
because a scope denotes the name of an application but fallback con�g-
uration applies to all applications.

3.7 Default Values

Although embedded fallback con�guration is useful in applications, some
people may think it is overkill if they just want to quickly hack together
a short program that uses a few con�guration variables. For this reason,
Con�g4* provides a alternative mechanism, which is an extra optional
parameter (denoting a default value) that can be passed to lookup op-
erations. For example, the �rst Java statement below will throw an
exception if the speci�ed variable is missing from the con�guration �le,
but the second statement will return "/tmp".

logDir = cfg.lookupString(scope, "log.dir");

logDir = cfg.lookupString(scope, "log.dir", "/tmp");

3.8 Listing the Contents of a Scope

You can invoke listFullyScopedNames() to get a sorted list of the names
of all entries (that is, variables and scopes) contained within a scope.

String[] names = cfg.listFullyScopedNames(scope, "",

Configuration.CFG_SCOPE_AND_VARS, true);

The �rst two parameters to listFullyScopedNames() are a scope and
local name within that scope. These parameters are combined to form
a fully-scoped name, as discussed in Section 3.4 on page 22. In practice,
you typically use an empty string for the local name parameter, unless
you want to get a listing of a nested scope within the main scope for an
application.

28 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

The third parameter is an integer bit mask that speci�es what kind
of entries you want to be listed. The Configuration class de�nes Java
integer constants or C++ enum values that you can use.

� CFG_STRING. List the names of string variables.

� CFG_LIST. List the names of list variables.

� CFG_VARIABLES. List the names of string and list variables.

� CFG_SCOPE. List the names of scopes.

� CFG_SCOPES_AND_VARS. List all names (scopes and variables).

The �nal parameter indicates if listFullyScopedNames() should re-
curse into nested scopes (true) or just list entries in the stated scope
(false).

At the start of this chapter, I showed a scope called foo_srv. The
above call to listFullyScopedNames() for that scope returns the following
list of strings.

foo_srv.log

foo_srv.log.dir

foo_srv.log.level

foo_srv.timeout

Calling the same operation but specifying false for the recursive pa-
rameter returns the following.

foo_srv.log

foo_srv.timeout

By calling the operation with a value other than CFG_SCOPE_AND_VARS,
you can get a list of the names of just string variables (CFG_STRING), just
list variables (CFG_LIST), both string and list variables (CFG_VARIABLES),
or just scopes (CFG_SCOPE).

3.8.1 Local and Fully-scopes Names

When you call listFullyScopedNames(), all the strings in the returned
list are fully-scoped names, so they have the name of the scope followed
by a period ("foo_srv.") as a pre�x. If you do not want this pre�x then
you call call listLocallyScopedNames() instead.

3.9. WORKING WITH UID ENTRIES 29

3.8.2 Determining the Type of an Entry

Once you get a list of names within a scope, you may want to iterate over
the list of names and process each one by calling, say, lookupString() or
lookupList(). Obviously, to know which of these operations you should
call, you need to know the type of a named entry. You can determine
this by calling cfg.type(scope, localName). The value returned from
this operation is one of the following integer constants.

� CFG_STRING. The entry is a string variable.

� CFG_LIST. The entry is a list variable.

� CFG_SCOPE. The entry is a scope.

� CFG_NO__VALUE. The entry does not exist.

3.8.3 Filtering Results with Patterns

The listFullyScopedNames() and listLocallyScopedNames() operations
can take an additional String or String[] parameter that specify one or
more wildcarded patterns.

String[] names = cfg.listLocallyScopedNames(scope, "",

Configuration.CFG_SCOPE_AND_VARS, true, "time*");

If you pass this extra parameter, then a name is included in the returned
list only if the name matches at least one of the patterns. Within a
pattern, "*" matches zero or more characters. For example, "time*"

matches "timeout" but does not match "log.dir".

3.9 Working with Uid entries

Con�g4* provides operations that make it easy to access entries (vari-
ables and scopes) whose names start with a "uid-" pre�x.

3.9.1 Expanded and Unexpanded Names

A name like uid-000000042-foo is said to be in its expanded form, while
uid-foo is said to be in its unexpanded form. You can convert a name
from its expanded form into its unexpanded form with the unexpand()
operation.

30 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

String name = "uid-000000042-foo.bar.uid-000000043-acme";

String unexpandedName = cfg.unexpand(name);

After executing the above code, the unexpandedName variable has the
value "uid-foo.bar.uid-acme".

Calling unexpand() on a string that does not contain "uid-" returns
the same string. For example, calling unexpand("foo.bar.acme") returns
"foo.bar.acme".

Curious readers may be wondering if there is an expand() operation
that does the conversion the opposite way. Yes, there is; expand() em-
beds a di�erent nine-digit number whenever it encounters "uid-" within
the name. When Con�g4* is parsing a �le, it calls expand() for every
name it encounters. It is unlikely you will need to call expand() from
your own code.

3.9.2 The uidEquals() Operation

The uidEquals() operation takes two parameters. It calls unexpand()
on both of its parameters and returns true if the unexpanded names are
identical.

name = ...;

if (cfg.uidEquals("uid-foo", name)) { ... }

3.9.3 Processing Uid Entries in Sequence

The listFullyScopedNames() and listLocallyScopedNames() operations
return a sorted list of names. This guarantees that the relative order
of uid names in the list re�ects the order of those entries in the input
con�guration �le. As a concrete example, consider the con�guration �le
in Figure 3.5 (which, for convenience, is a copy of a �gure from the
previous chapter).

Let us assume we want to process each uid-recipe scope in order
and, within each of these scopes, we want to process each uid-step in
order. You can do this with the code in Figure 3.6.

The processRecipeFile() operation parses a con�guration �le and
calls listLocallyScopedNames() to obtain a sorted list of the uid-recipe
scopes. Then it calls processRecipe() to process each of these scopes.

The body of processRecipe() calls lookupString() and lookupList()

to get the values of the name and ingredients variables. Then it calls
listLocallyScopedNames() to get a sorted list of the uid-step string
variables, and uses a for-loop to process each of these in turn.

3.10. SCHEMA VALIDATION 31

Figure 3.5: File of recipes

uid-recipe {

name = "Tea";

ingredients = ["1 tea bag", "cold water", "milk"];

uid-step = "Pour cold water into the kettle";

uid-step = "Turn on the kettle";

uid-step = "Wait for the kettle to boil";

uid-step = "Pour boiled water into a cup";

uid-step = "Add tea bag to cup & leave for 3 minutes";

uid-step = "Remove tea bag";

uid-step = "Add a splash of milk if you want";

}

uid-recipe {

name = "Toast";

ingredients = ["Two slices of bread", "butter"];

uid-step = "Place bread in a toaster and turn on";

uid-step = "Wait for toaster to pop out the bread";

uid-step = "Remove bread from toaster and butter it";

}

3.10 Schema Validation

A schema is a blueprint or de�nition of a system. For example, a
database schema de�nes the layout of a database: its tables, the columns
within those tables, and so on. It is common for a schema to be written
in the same syntax as the system it de�nes. For example, a database's
schema might be stored within a table of the database itself.

Another technology that uses schemas is XML. The �rst schema lan-
guage for XML was called document type de�nition (DTD). Many people
felt DTD was su�cient to de�ne schemas for text-oriented XML docu-
ments, which tend to have a simple structure, but not �exible enough
to de�ne schemas for more structured, data-oriented XML documents.
Because of this, several competing XML schema languages were de�ned,
including XML Schema and RELAX NG.

By itself, a schema it not very useful; you also need to have a
piece of software, called a schema validator, that can compare a sys-
tem (database, XML �le or whatever) against the system's schema def-
inition and report errors. Within the Con�g4* library is a class called
SchemaValidator that, as its name suggests, implements a schema valida-
tor. In this section I provide a quick overview of this schema validator;
you can �nd full details in Chapter 9.

32 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

Figure 3.6: Code to process the �le of recipes

void processRecipeFile()

{

String[] recipeNames;

Configuration cfg;

cfg = Configuration.create();

cfg.parse("recipes.cfg");

recipeNames = cfg.listLocallyScopedNames("", "",

Configuration.CFG_SCOPE,

false, "uid-recipe");

for (int i = 0; i < recipeNames.length; i++) {

processRecipe(cfg, recipeNames[i]);

}

}

void processRecipe(Configuration cfg, String scope)

{

String[] ingredients;

String name;

String[] stepNames;

name = cfg.lookupString(scope, "name");

ingredients = cfg.lookupList(scope, "ingredients");

... // process name and ingredients

stepNames = cfg.listLocallyScopedNames(scope, "",

Configuration.CFG_STRING,

false, "uid-step");

for (int i = 0; i < stepNames.length; i++) {

step = cfg.lookupString(scope, stepNames[i]);

... // process step

}

}

Figure 3.7 shows a scope, foo, in a con�guration �le. Figure 3.8
shows some Java code that de�nes a schema for the foo scope, parses
the con�guration �le and then uses the SchemaValidator class to compare
the contents of the foo scope against the schema.

Within Figure 3.8, the schema is de�ned as an array of strings (lines 5�
12). Within this schema de�nition, ignore the �st two lines (strings
starting with "@typedef") for the moment. The next line de�nes an
entry called idle_timeout of type durationMilliseconds. You can see
that this describes the idle_timeout variable within the foo scope in

3.10. SCHEMA VALIDATION 33

Figure 3.7: A con�guration �le to be validated

foo {

idle_timeout = "2 minutes";

log_level = "3";

log_file = "/tmp/foo.log";

price_list = [

item colour price

#----------------------------------

"shirt", "green", "EUR 19.99",

"jeans", "blue", "USD 39.99"

];

};

Figure 3.8: Code that performs schema validation

1 import org.config4j.*;

2 ...

3 String scope = "foo";

4 SchemaValidator sv = new SchemaValidator();

5 String schema[] = new String[] {

6 "@typedef colour = enum[red, green, blue]",

7 "@typedef money = units_with_float[EUR, GBP, YEN, USD]",

8 "idle_timeout = durationMilliseconds",

9 "log_level = int[0, 5]",

10 "log_file = string",

11 "price_list = table[string,item, colour,colour, money,price]"

12 };

13 Configuration cfg = Configuration.create();

14 try {

15 cfg.parse(cfg.getenv("FOO_CONFIG"));

16 sv.parseSchema(schema);

17 sv.validate(cfg, scope, "");

18 } catch(ConfigurationException ex) {

19 System.out.println(ex.getMessage());

20 }

Figure 3.7. The next line de�nes an entry called log_level which is an
integer in the range 0 to 5. The line after that de�nes log_file to be
of type string. The types used so far (durationMilliseconds, int and
string) are built-in types for the schema validator, so the de�nitions for
the �rst three entries are straightforward.

The de�nition for price_list is more interesting. You can see from

34 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

Figure 3.7 that this variable is a list of string, but the list is formatted to
look like a table with three columns. The schema de�nition de�nes this
entry to be a table in which the �rst column is called item and is of type
string, the second column is called colour and is of type colour, and
the last column is called price and is of type money. The types colour

and money are not built-in types for the schema validator. Instead, the
lines in the schema starting with "@typedef" de�ne these types. You can
see that colour is de�ned to be an enum of three possible values (red,
green or blue). The money type is de�ned to be a string of the form
"<units> <float>" where the <units> can be one of: "EUR" "GBP" "YEN"

or "USD".
After the con�guration �le has been parsed (line 15), the code uses a

SchemaValidator object to parse the schema parameter and stores it in a
more e�cient format (line 16). Then the validate() operation (line 17)
is used to validate the speci�ed scope of the speci�ed con�guration object
against the schema. If validate() encounters an error, then it reports
the error by throwing an exception. The catch clause (lines 18�20) prints
out the text of the exception.

3.10.1 Informative Error Messages

You can see from Figure 3.8 that the schema language (lines 5�13) is
very compact and easy to understand, and that the API for using the
schema validator (lines 17�18) is equally compact and easy to use. You
may be wondering: if there are any errors in the con�guration �le, does
the schema validator report easy-to-understand error messages? The
answer is yes, as the following examples illustrate.

If you misspell log_level as logLevel then the schema validator re-
ports the following error.

foo.cfg: the ’foo.logLevel’ variable is unknown

If log_level is set to "255" then the schema validator reports the fol-
lowing error.

foo.cfg: bad int value (’255’) for ’foo.log_level’:

outside the permitted range [0, 5]

If "car" appears instead of "green" in the colour column of price_list
then the schema validator reports the following error.

foo.cfg: bad colour value (’car’) for the ’colour’ column

in row 1 of the ’foo.price_list’ table: should be one of:

’red’, ’green’, ’blue’

3.11. SUMMARY 35

3.10.2 Schemas for Uid Entries

If you want to de�ne a schema for a �le that contains uid entries, then
you specify the unexpanded form of uid names. For example, Figure 3.9
shows a schema for the recipes �le in Figure 3.5 on page 31.

Figure 3.9: Schema validation for the recipes �le

String schema[] = new String[] {

"uid-recipe = scope",

"uid-recipe.name = string",

"uid-recipe.ingredients = list[string]",

"uid-recipe.uid-step = string"

};

3.11 Summary

The API of Con�g4* is simple. As demonstrated in Figures 3.1 and 3.2
on page 20, a basic application needs just three steps to use Con�g4*:
(1) create an empty Configuration object; (2) parse() a con�guration
�le; and (3) call lookup<Type>() operations to access con�guration vari-
ables in a type-safe manner. Doing that will enable the application to
avail of some important bene�ts of Con�g4*, such as adaptable and cen-

tralised con�guration.
Other features of Con�g4* can be accessed with a few extra operation

calls.

� Integration with command-line options. Figure 3.3 on page 23 il-
lustrates how an application can use "-set name value" command-
line options to insert name-value pairs into a Configuration object
before parsing a con�guration �le. This trivial step makes it fea-
sible for a con�guration �le to use the conditional assignment op-
erator ("?="), so that command-line options can override default
values in a con�guration �le.

� Fallback con�guration. As discussed in Section 3.6.3 on page 25,
the config2cpp and config2j utilities can convert a con�guration
�le into a (class wrapper around a) string that can be embedded
inside an application. This embedded string can be used to pop-
ulate a fallback Configuration object that is then attached to the
application's main Configuration object. Once this has been done,

36 CHAPTER 3. OVERVIEW OF THE CONFIG4* API

a call to a lookup<Type>() operation on the main Configuration

object will �rst search for the value in the main object; if it is
not present there then the operation will return the value from
the fallback object. In this way, an application can be highly con-
�gurable yet can work with just a minimal (or even no) external
con�guration �le.

� Schema validation. As discussed in Section 3.10 on page 31, Con-
�g4* provides an easy-to-use schema validator that can perform
useful checks on the contents of a con�guration �le. For example,
it can report variables or scopes with misspelt or unknown names.
The schema validator also makes it possible for a list of strings to be
formatted, and interpreted, as a table with type-speci�c columns.

� Uid entries. The "uid-" pre�x on the names of variables and scopes
provides an elegant way for a Con�g4* �le to store ordered lists of
items. As discussed in Section 3.9 on page 29, the Con�g4* API
provides operations that make it easy for an application to process
"uid-" entries.

These capabilities of Con�g4* are very powerful and �exible, yet the
Con�g4* API remains extremely easy to use.

Chapter 4

Comparison with Other

Technologies

4.1 Introduction

Con�g4* is not the only option you have for making applications con-
�gurable. Many other choices exist, including command-line arguments,
environment variables, writing your own con�guration-�le parser, using
Java properties �les, or using XML �les. In this chapter, I compare these
alternative approaches to Con�g4*.

4.2 Command-line Options & Environment

Variables

When you start writing an application, you might think the application
needs only a small amount of con�guration information and conclude
that this need can be met by the use of command-line options. Over time,
the amount of con�guration information used by an application tends to
grow. If the number of command-line options grows to more than, say,
10, then users are likely to think the application is di�cult to con�gure.
In contrast, a con�guration �le containing potentially hundreds of entries
can be easy to use and maintain, especially if fallback con�guration is
used to provide useful default con�guration values.

The use of environment variables to store con�guration information

37

38 CHAPTER 4. COMPARISON WITH OTHER TECHNOLOGIES

shares a limitation with the use of command-line options: if an applica-
tion uses more than a handful of environment variables, then most users
will think the application is di�cult to con�gure.

Environment variables su�er from another drawback, which is that
for a time it was di�cult for a Java-based application to access envi-
ronment variables. The �rst version of Java provided System.getenv()

for accessing environment variables. However, later on Sun realized that
some operating systems, such as MacOS, did not support environment
variables. Sun was promoting Java as a highly portable language, and
had even coined a slogan to re�ect this: Write Once, Run Anywhere.
Sun decided it did not make sense to encourage people to rely on a not-
universally-supported concept such as environment variables. Because
of this, Sun deprecated the use of System.getenv() and encouraged de-
velopers to use Java system properties as a replacement. A Java system
property can be set by supplying a command-line option of the form
-D<name>=<value> to the Java interpreter. Several years later, Apple de-
cided to re-implement the Macintosh operating system on top of a UNIX
base; doing so introduced environment variables to the Macintosh, but
there may still be other operating systems that do not support envi-
ronment variables. Java 1.5 has undeprecated system.getenv() and this
method now returns null if the environment variable does not exist or
if the operating system does not support environment variables.

As a side note, developers using a pre-1.5 version of Java can access
environment variables, albeit in an indirect manner. This is done by
calling java.lang.Runtime.getRuntime().exec() to execute an external
command (for example, "cmd /c set" on Windows or "env" on UNIX)
that prints name=value pairs for all environment variables. You parse
the output of the executed command to gain read-only access to the en-
vironment variables. The Ant utility (http://ant.apache.org) uses this
technique so that environment variables can be used in its build �les.
Con�g4J uses the same technique to enable access to environment vari-
ables from con�guration �les.

4.3 Writing Your Own Con�guration Parser

Many developers think to themselves �It's not that di�cult to write a
con�guration-�le parser; I could hack together something in a few hours
and with just a few hundred lines of code�. However, a con�guration-�le
parser built in such a short period of time is likely to o�er very lim-

http://ant.apache.org

4.4. JAVA PROPERTIES FILES 39

ited functionality. For example, perhaps the parser accepts name=value
statements but the value must be a string literal that is terminated by
the end of line. This means that none of the following are supported:
(1) long values that extend over several lines, (2) values that are lists,
(3) values de�ned in terms of environment variables or previously de-
�ned con�guration variables, (4) scopes for grouping related name=value
statements, (5) if-then-else statements that enable a �le to encapsulate
con�guration information that varies between users or machines, (6) the
ability for one con�guration �le to include other �les, or (7) the ability
to obtain con�guration from, say, a website or a database.

Another problem with writing a con�guration-�le parser is that it is
not su�cient to just write the code. You also need to test and document
it; ideally, you should write both a user guide and programming guide.
Writing tests and documentation might not be particularly di�cult, but
these tasks require time. An initial plan to �hack together something
in a few hours and with just a few hundred lines of code� can easily
turn into a multi-week job. And the likely result is that you still have
a con�guration-�le parser with the numerous limitations listed in the
previous paragraph.

A �nal problem with this approach is that development teams for
countless projects have written their own con�guration-�le parsers. Each
development team's parser tends to have slight di�erences in the syntax
it accepts. The result is that users have to learn a di�erent con�guration
syntax for each application they use.

A better approach is for development teams, globally, to standardize
on using the same con�guration-�le syntax in all their applications. Of
course, if one con�guration-�le syntax is to be used by many applications,
then the syntax needs to be very �exible, parsers for that syntax need
to be available in di�erent languages, there should be good user- and
programmer-oriented documentation available, and the parsers should
be available under a license that does not hinder their use in open-source
or proprietary projects. These are precisely the goals of Con�g4*.

4.4 Java Properties Files

The standard Java class library provides a con�guration-�le parser, al-
though Java uses the term properties �le rather than con�guration �le.
The syntax rules of a Java properties �le are as follows.

Lines starting with # or ! denote comments.

40 CHAPTER 4. COMPARISON WITH OTHER TECHNOLOGIES

The backslash character ("\") is used as an escape mechanism. For
example, "\t" and "\n" denote tab and newline characters. A backslash
at the end of a line denotes line continuation, thus enabling a long string
to be split across several lines. The input �le is assumed to be in the
ISO-Latin-1 encoding (ISO-Latin-1 is an 8-bit character set that contains
the characters of US-ASCII plus accented characters for some European
languages). Internally, Java stores strings in a Unicode format, so each
ISO-Latin-1 character is converted to its Unicode equivalent while the
properties �le is being parsed. The escape sequence \uxxxx, where each
x denotes a hexadecimal digit, can be used to represent an arbitrary
Unicode character by its hexadecimal code point.

Entries in a Java properties �le consist of name-value pairs. The
name and the value can be separated by "=" or ":", with optional whites-
pace surrounding the separator. Alternatively, the name and value can
be separated by just whitespace, that is, without "=" or ":". If a name
but no value is speci�ed, then an empty string is used as the value.

There are several signi�cant problems with Java properties, as I dis-
cuss in the following subsections.

4.4.1 Unwanted Whitespace at the End of a Line

Consider the following line from a properties �le.

logFile = /tmp/foo.log

That line appears to set logFile to the value "/tmp/foo.log". However,
if there are any spaces at the end of the line, then those spaces become
part of the value, which is almost certainly not what is desired. Trailing
whitespace is a common cause of miscon�gured Java applications, and it
can be di�cult to diagnose such miscon�guration because the whitespace
is invisible in most text editors. In Con�g4*, strings are enclosed within
double quotes which prevents this cause of miscon�guration.

4.4.2 Lack of Syntax Checking

Figure 4.1 shows an example of a Java properties �le. The �rst two lines
use "=" and ":" to separate the name and value. The third and fourth
lines use just a space to separate the name and value. For example,
in line 3, the name is Java and its value is "properties accepts this

text". The last line of the properties �le contains just a name (&*%!)
1

1&*%! is not really a name. It's more of a curse at the lack of error checking in a
Java properties �le.

4.4. JAVA PROPERTIES FILES 41

so an empty string is used as its value.

Figure 4.1: Example of input acceptable to Java properties

Roses=red

Violets : better

Java properties accept this text

Without raising an error

&*%!

The syntactic �exibility permitted in a Java properties �le is prob-
lematic because it means that very little syntax checking is performed.
In fact, almost any �le � whether it be a text �le or a binary �le �
is acceptable as input to the Java properties parser. The only syntactic
error that might be raised is if the �le contains the characters "\u" and
these are not followed by four hexadecimal digits.

One principle of good programming is fail fast [Ray03], which means
that if a program is going to fail, then it should fail at the earliest op-
portunity because this makes it easier for users to diagnose the problem.
The Java properties �le parser ignores the fail-fast principle, instead
accepting almost any garbage as input and letting other parts of an ap-
plication report an error when they �nd that an expected property has
not been set.

4.4.3 Semantically Poor

The names in the name=value pairs of a properties �le are in a �at
namespace. The names can have embedded periods (".") but that seems
to be a side-e�ect of allowing arbitrary characters (such as &*%!) in
names rather than an intent to support hierarchical names. Certainly,
there is nothing in the Java properties API that supports the concept of
hierarchical names. When you have only a �at namespace in a con�gu-
ration �le, then you typically end up having a separate con�guration �le
for each application. In contrast, Con�g4* provides explicit support for
hierarchical scopes through its syntax and API; this makes it feasible to
store con�guration information for several (usually related) applications
in a single �le.

Another limitation of properties �les is that there is no support for
values that are lists of strings. It is common for developers to work
around this limitation by writing code that splits a property value into
a list based on occurrences of, say, a comma (","). However, having to

42 CHAPTER 4. COMPARISON WITH OTHER TECHNOLOGIES

do this is tedious. The approach taken in Con�g4* of providing explicit
support for lists is better.

Other useful capabilities of Con�g4* have no counterpart in Java
properties �les. For example, there is no ability to de�ne a variable in
terms of other variables, and there is no support for reusing con�guration
information, such as the @include and @copyFrom statements in Con�g4*.
Also properties �les have no support for accessing centralized con�gura-
tion information by executing an external command, such as "exec#..."
in Con�g4*, and no support for adaptive con�guration (Section 2.11 on
page 14).

4.4.4 Type-unsafe Lookup API

The API of the Properties class enables developers to access property
values only as strings. It is common for a property to be a non-string
type, such as an integer, �oating-point number, boolean or list. When-
ever type-safe access to a property value is required, developers must
write code that retrieves the property value as a string, converts it to
another data type, and throws a suitable exception if the data-type con-
version fails. Code for doing this is not di�cult to write, but it is tedious
and the need to write such code is common enough that it would have
been better for the Properties class to provide this functionality. Con-
�g4* provides such type-safe lookup operations.

4.5 Platform-speci�c Con�guration Files

It is common for a software company to write a con�guration-�le parser
suitable for the needs of its own products. Having done this, the com-
pany may then decide to expose the API of the con�guration-�le parser
so that their customers can use it too. Two famous examples come
from Microsoft. Microsoft wrote a parser for its ".ini" �les that were
used in Windows 3.1, and exposed the API of this parser so companies
that wrote applications for Windows could make use of it. Then when
Microsoft released Windows 95, it switched from ".ini" �les to the Win-
dows Registry. Again, it exposed the API for this and many companies
made use of it in their products. Another famous example is X11, a
windowing system widely used on UNIX machines. X11 exposes an API
for parsing its con�guration �les, called X resource �les. Countless other
examples can be found in companies that sell framework libraries.

4.6. XML-BASED CONFIGURATION FILES 43

If you are writing aWindows-based application, then it is easier to use
the Windows-supplied API for accessing the registry rather than write
your own con�guration-�le parser. Likewise, if you are writing an X11-
based application, then it is easier to retrieve your application-speci�c
con�guration information from an X11 resource �le rather than write
your own con�guration-�le parser. And if you are writing an application
that uses a framework library that happens to provide a con�guration-
�le parser, then. . . Well, you get the idea.

If your application runs on only one platform (operating system, win-
dowing system, framework library and so on), then making use of that
platform's con�guration-�le parser seems like a great idea. However, it is
common for an application to be developed initially for one platform and
later be ported to other platforms. As soon as that happens, your use of
a platform-speci�c con�guration-�le parser becomes a liability. Count-
less software teams have run into this problem over the years. If you use
an Internet search engine, then you will �nd evidence of di�erent groups
who have implemented their own parser for, say, ".ini" �les because
they have ported a Windows-speci�c application to another operating
system. Likewise, some groups have implemented a Java properties �le
parser in other languages because their initially Java-only project grew
to include components written in other languages.

I am not going to critique numerous platform-speci�c, con�guration-
�le parsers. Aside from me never having seen one that has as much
�exibility as Con�g4*, they all su�er from the same fundamental limi-
tation, which is that they are platform speci�c.

4.6 XML-based Con�guration Files

XML parsers are available for a wide variety of programming languages
and operating systems. This means that XML provides a platform-
neutral con�guration �le format. The platform-neutral characteristic of
XML is probably a signi�cant reason why more and more developers are
using XML for storing con�guration information. However, there are
some signi�cant drawbacks to using XML to store con�guration infor-
mation, as I now discuss.

4.6.1 Verbosity

XML can be easy to read when it is used for infrequent markup in a text-
oriented document. However, when XML is used for structured data,

44 CHAPTER 4. COMPARISON WITH OTHER TECHNOLOGIES

then the amount of syntactic baggage imposed by the start tags and end
tags becomes visually distracting. You can see this by comparing the
Con�g4* �le in Figure 4.2 with similar information expressed in XML
format in Figure 4.3.

Figure 4.2: Example Con�g4* document

fooSrv {

timeout = "2 minutes";

log {

dir = "C:\foo\logs";

level = "0";

}

}

Figure 4.3: Example XML document

<fooSrv>

<timeout>2 minutes</timeout>

<log>

<dir>C:\foo\logs</dir>

<level>0</level>

</log>

</fooSrv>

Some people may think the XML would be more compact if it was
written to make use of attributes, but a quick look at Figure 4.4 shows
that this is not necessarily the case.

Figure 4.4: Example XML document using attributes

<scope name="fooSrv">

<property name="timeout" value="2 minutes"/>

<scope name="log">

<property name="dir" value="C:\foo\logs"/>

<property name="level" value="0"/>

</scope>

</scope>

Many developers who work with structured XML �les on a daily
basis claim �you eventually get used to the verbosity�. And, of course,

4.6. XML-BASED CONFIGURATION FILES 45

even if some developers do not get used to it, they may still endure it
simply because they are paid to do what their employers tell them to do.
However, if end users dislike XML's verbosity, then they may decide that
an application with an XML-based con�guration �le is too di�cult to
use, and so go in search of simpler-to-use application from a competing
vendor.

4.6.2 Limited Functionality

Once you look beyond the syntactic di�erences of XML and Con�g4*, it
is possible to compare the functionality they o�er.

Several pieces of functionality are similar. First, the ability to nest
elements in an XML �le provides functionality similar to the nested
scopes of Con�g4*. Second, in Con�g4*, a value can be either a string
or a list, while in XML, a value can be a string, and it is possible to
use nested elements to denote a list. Third, an XML document may
contain several identically-named elements. Con�g4* provides a similar
capability through the "uid-" pre�x on identi�ers (Section 2.12). Finally,
an application can iterate over the elements in an XML document in
the order in which they appeared in the source document. In contrast,
Con�g4* stores parsed information in hash tables; these provide fast
lookup times but they do not preserve the original order in which the
entries appeared within the source �le. However, if processing entries in
order is important, then this can be achieved through use of the "uid-"

pre�x on the names of entries.

Several capabilities in Con�g4* have no counterpart in XML. These
are: (1) statements, such as @include or @copyFrom, that enable con�g-
uration to be reused; (2) the ability to de�ne one con�guration variable
in terms of other con�guration variables; or (3) adaptive con�guration

(Section 2.11 on page 14). None of these capabilities is provided by an
out-of-the-box XML parser. Instead, countless XML-based projects have
had to implement such functionality by parsing an XML document and
then doing some post-processing of the generated DOM tree.

4.6.3 Checking the Correctness of Input Files

Writing code to check the validity of an XML �le is very tedious. To
avoid this, some developers use XML Schema to de�ne what can legally
appear in an XML-based con�guration �le and then parse con�guration
�les with a schema-validating XML parser. However, this approach has

46 CHAPTER 4. COMPARISON WITH OTHER TECHNOLOGIES

several drawbacks. First, XML Schema has a steep learning curve.2 Sec-
ond, schema �les are extremely verbose. Third, it can be quite di�cult to
understand some of the error messages produced by schema validators.

In contrast, the Con�g4* schema validator has a trivial learning curve
(it is described completely in 12 pages in Chapter 9), its schema de�ni-
tions are very compact, and its error messages are easy to understand.

4.6.4 Memory Usage

Use of Con�g4* adds a few hundred KB to an application's executable
size, and the amount of RAM consumed when a con�guration �le is
parsed is quite small: about 2.5 times the size of the con�guration �le.
In contrast, the library for a schema-validating XML parser can add
several megabytes to an application. In addition, the DOM tree built by
most parsers can also consume a lot of memory. Many functionally-rich
applications may not care about a few megabytes of overhead for parsing
XML-based con�guration �les. However, such overhead is unacceptable
for many smaller applications.

4.7 A Critique of Con�g4*

So far in this chapter I have compared Con�g4* with some other con-
�guration technologies and, in so doing, have pointed out what I feel
are the drawbacks of these other technologies. I now turn my focus on
Con�g4* to discuss its drawbacks.

One signi�cant drawback of Con�g4* is that, currently, there are
implementations for only two languages: C++ and Java. I hope imple-
mentations for other languages will follow in time.

A second signi�cant drawback of Con�g4* is that its international-
ization and localisation support is a work in progress (see the Con�g4*
Maintenance Guide for a discussion of these issues). I hope that, over
time, these de�ciencies will be addressed with the support of the open-
source community.

These drawbacks are due to the young age of Con�g4*, so a bit of
maturing should resolve both drawbacks. In contrast, the other con�g-
uration technologies discussed in this chapter have been around for over

2If you wish to learn XML Schema, then I recommend De�nitive XML Schema by
Priscilla Walmsley [Wal02]. The book is excellent, but the fact it is about 500 pages
long indicates that XML Schema is complex and has a steep learning curve.

4.8. SUMMARY 47

a decade. The drawbacks of those other technologies are due to inherent
design limitations rather than immaturity.

4.8 Summary

In this chapter I have compared Con�g4* with alternative technologies
for accessing con�guration information. The purpose of the comparisons
is not to ridicule or demonise any of the alternative approaches to pro-
viding con�guration information. Rather, my purpose is to show that,
when it comes to con�guration parsers, there is a widespread under-
appreciation for the importance of issues such as: (1) adaptable con�gu-
ration, (2) centralizable con�guration, (3) hierarchical scopes, (4) type-
safe access, (5) ease of use for developers, (6) ease of use for end users,
and (7) portability across operating systems and languages. Most exist-
ing con�guration technologies score poorly against most of these criteria.
Con�g4* is useful in its own right, but by scoring high in these seven
criteria, it raises the bar for other (present and future) con�guration
technologies.

I am writing this paragraph in 2011 and, as far as I know, Con�g4* is
by far the best con�guration parser in the world. I will be disappointed
if I can still make that claim in, say, 5 years time. By highlighting the
ways in which Con�g4* is superior, I am laying down a challenge to the
developers of other con�guration technologies. Please, take the best ideas
from Con�g4* and innovate to produce something better. Con�guration
parsers have been depressingly mediocre for decades. It is time for us to
make them better. Signi�cantly better.

48 CHAPTER 4. COMPARISON WITH OTHER TECHNOLOGIES

Part II

Infrastructure

49

Chapter 5

Con�g4* Security

5.1 The Need for Security

There are three ways that Con�g4* can execute an external command.
First, an external command can be speci�ed when parsing a con�gura-
tion source.

cfg.parse("exec#command");

Second, within a con�guration �le, you can @include the output of exe-
cuting an external command.

@include "exec#command";

Finally, within a con�guration �le you can use exec() to execute an
external command.

name = exec("command");

Each of these three cases presents the same security risk: if Con�g4* per-
mits arbitrary external commands to be executed, then somebody could
arrange for a malicious command to be executed. For example, imagine
the damage that could be caused by somebody adding the following to
a con�guration �le.

@if (osType() == "windows") {

@include "exec#del /F /S /Q C:\";

} @elseIf (osType() == "unix") {

@include "exec#rm -rf /";

}

51

52 CHAPTER 5. CONFIG4* SECURITY

We need a way to prevent such malicious commands from being executed,
while allowing non-malicious commands, such as curl and hostname, to
be executed.

5.2 The Con�g4* Security Mechanism

The security mechanism in Con�g4* is driven by three con�guration
variables: allow_patterns, deny_patterns and trusted_directories. An
attempt to execute a command will succeed only if all of the following
conditions are true.

� The command matches one or more patterns in allow_patterns.

� The command does not match any patterns in deny_patterns.

� The �rst word of the command is a �le that exists in one of the
directories in trusted_directories. For example, if the command
line is "curl -sS http://host/file.cfg" then curl must exist on
one of the directories in trusted_directories. On Windows, Con-
�g4* will check for the existence of the �le with no extension, a
".exe" extension and a ".bat" extension.

When pattern matching is being performed, "*" is treated as a wild-
card that can match zero or more characters. For example, the pat-
tern "curl *" matches "curl -sS http://host/file.cfg". The pattern
"curl*" (no space before "*") matches the same string but it matches
"curlfoobar" too.

If Con�g4* allows a command to be executed then it rewrites the
command slightly to put in the full path to the executable. For example,
if curl resides in /usr/local/bin (and let us assume that directory is
listed in trusted_directories) then /usr/local/bin/ is pre�xed onto the
command "curl -sS http://host/file.cfg" when it is being executed.
This is to ensure that the executed command is one in a trusted directory
rather than one in another directory that appears in PATH.

5.3 The Default Security Policy

Figure 5.1 shows the default security policy of Con�g4*.
The @if-then-@else statement in the default security policy makes it

possible to tailor the security for di�erent operating systems. You can see

5.3. THE DEFAULT SECURITY POLICY 53

Figure 5.1: Default security con�guration

@if (osType() == "unix") {

allow_patterns = ["curl *", "hostname", "uname",

"uname *", "ifconfig"];

deny_patterns = ["*‘*", "*|*", "*>*"];

trusted_directories = ["/bin", "/usr/bin", "/sbin"

"/usr/local/bin", "/usr/sbin"];

} @elseIf (osType() == "windows") {

allow_patterns = ["curl *", "hostname", "uname",

"uname *", "ipconfig"];

deny_patterns = ["*‘*", "*|*", "*>*"];

trusted_directories = [

getenv("SYSTEMROOT") + "\system32"

];

} @else {

allow_patterns = [];

deny_patterns = ["*"];

trusted_directories = [];

};

from Figure 5.1 that the security policy varies slightly between UNIX and
Windows; for other (unknown) operating systems, the security policy
denies all attempts to execute commands. Over time, it is likely that
Con�g4* will be ported to other operating systems, and the default
security policy will be updated to re�ect this.

On UNIX, allow_patterns permits the use of curl, hostname (without
any command-line arguments), uname (with and without command-line
arguments), and ifconfig (without any command-line arguments). The
deny_patterns denies the use of back quotes, pipes and redirection of
output. The use of back quotes and pipes is prohibited because they
provide ways to combine potentially malicious commands with benign
commands, as the examples below show.

@include "exec#curl ‘rm -rf /‘";

@include "exec#curl | rm -rf /";

Redirection of output is prohibited for two reasons. First, Con�g4* needs
to have access to the standard output and standard error of executed
commands so there is no valid reason for a user to want to redirect
standard output or standard error. Second, if redirection of output was
allowed then a malicious person might use this to damage important �les
in the operating system. For example, a malicious person might trick
somebody with root privileges to parse a con�guration �le containing

54 CHAPTER 5. CONFIG4* SECURITY

the following.

@include "exec#curl > /etc/passwd";

The Con�g4* security policy on Windows is very similar to that on
UNIX. Partly this is due to Windows and UNIX having some similari-
ties, and partly due to collections of UNIX-like utilities, such as Cygwin
(www.cygwin.com), being available for Windows machines. The main
di�erence between the default security policies on Windows and UNIX
is trusted_directories, as can be seen in Figure 5.1.

5.4 Overriding the Default Security Policy

When a Configuration object is created, it uses the default security
policy shown in Figure 5.1 on page 53. You can override this default
security policy by calling setSecurityConfiguration(). The �rst (and
possibly only) parameter to this operation is a con�guration object that
de�nes allow_patterns, deny_patterns and trusted_directories. By
default, Con�g4* assumes that these variables are de�ned in the global
scope. However, if the variables are de�ned in a nested scope then you
should pass a second parameter that indicates the name of this scope. For
example, consider a security policy de�ned in a scope called security.

security {

allow_patterns = [...];

deny_patterns = [...];

trusted_directories = [...];

}

The code below shows (in Java syntax) how you can set that security pol-
icy on a Configuration object called cfg prior to parsing an application
con�guration �le.

Configuration cfg = Configuration.create();

Configuration secCfg = Configuration.create();

secCfg.parse(...);

cfg.setSecurityConfiguration(secCfg, "security");

cfg.parse(...); // parse application configuration

That code is a bit verbose, but you can shorten it somewhat by using one
of the overloaded versions of setSecurityConfiguration(). For example,
if the security policy is de�ned in a �le called security.cfg then you can
use the following code.

http://www.cygwin.com

5.5. SUMMARY 55

Configuration cfg = Configuration.create();

cfg.setSecurityConfiguration("security.cfg", "security");

cfg.parse(...); // parse application configuration

If the security policy is, say, on a web server then you can use "exec#..."
in place of the �le name (as long as the default security policy in place
permits that command to execute). If the security policy is in an embed-
ded con�guration string (perhaps generated with the aid of config2cpp
or config2j) then you can use code like that shown below.

Configuration cfg = Configuration.create();

cfg.setSecurityConfiguration(

Configuration.INPUT_STRING,

EmbeddedSecurityConfig.getString(),

"security");

cfg.parse(...); // parse application configuration

5.5 Summary

There are three ways in which Con�g4* can execute a shell command.

cfg.parse("exec#command"); // C++ or Java code.

@include "exec#command"; // Inside a configuration file.

name = exec("command"); // Inside a configuration file.

Each case presents the same security issue: we need to permit useful
commands to be executed, while preventing the execution of harmful
commands. Con�g4* does this by attaching a security policy to each
Configuration object. A default security policy is embedded inside the
Con�g4* library, and an application programmer can override this for a
Configuration object by invoking the setSecurityConfiguration() op-
eration.

56 CHAPTER 5. CONFIG4* SECURITY

Chapter 6

The config2cpp and

config2j Utilities

6.1 Introduction

The config2cpp and config2j utilities read a con�guration �le and gen-
erate a C++ or Java �le that contains a class wrapper around a snapshot
of the �le's contents. These utilities make it easy to generate a con�g-
uration string that can be embedded in an application. This can be
useful in an embedded system that does not contain a �le system. It
is also useful if you want an application to have �fallback� con�guration
(discussed in Section 3.6.3 on page 25).

6.2 Basic Operation

The config2cpp utility is a compiled application, while config2j is a
Windows batch �le or UNIX shell script that executes the main() oper-
ation of the org.config4j.Config2J class.

Figure 6.1 shows a �le, Fallback.cfg, that contains the con�guration
information we want to embed as the fallback con�guration for an ap-
plication. We can do this for a C++ or Java application by running one
of the following commands:

config2cpp -cfg Fallback.cfg -class FallbackConfig

config2j -cfg Fallback.cfg -class FallbackConfig

57

58 CHAPTER 6. THE CONFIG2CPP AND CONFIG2J UTILITIES

Figure 6.1: The �le Fallback.cfg

timeout = "infinite";

log {

dir = "."; # current working directory

level = "1";

}

TCP {

buffer_size = "8 KB";

threading_policy = "thread_pool";

max_threads = "10";

}

SSL {

buffer_size = "8 KB";

threading_policy = "thread_pool";

max_threads = "10";

}

Figure 6.2 shows the Java class generated from the �le shown in Fig-
ure 6.1; a generated C++ class would be structurally similar. The con-
structor initialises two instances variables, schema and str, that can be
accessed by calling the public operations getSchema() and getString().

For the moment, ignore the initialisation of schema (I will discuss
that in Section 6.4 on page 60), and instead look at the initialisation of
str. That variable is initialised to hold a copy of the contents of the �le
given as a command-line argument to config2j or config2cpp.

By default, your application would have to create an instance of
the generated class before invoking getSchema() or getString(). That
explicit creation step can be avoided by using the -singleton command-
line option, which causes the generated class to provide an automatically-
created singleton object; getString() and getSchema() become static

operations that delegate to the singleton object.

config2cpp -cfg Fallback.cfg -class FallbackConfig -singleton

config2j -cfg Fallback.cfg -class FallbackConfig -singleton

By default, the generated class is not in any Java package or C++
namespace. The -package <name> or -namespace <name> command-line
option can be used to generate the class in a speci�ed package or names-
pace. For example:1

config2cpp -cfg Fallback.cfg -class FallbackConfig -singleton \

1The backslash indicates line continuation.

6.2. BASIC OPERATION 59

Figure 6.2: Java class generated by config2j

class FallbackConfig

{

public FallbackConfig()

{

schema = new String[12];

schema[0] = "SSL = scope";

schema[1] = "SSL.buffer_size = memorySizeBytes";

schema[2] = "SSL.max_threads = int";

schema[3] = "SSL.threading_policy = string";

schema[4] = "TCP = scope";

schema[5] = "TCP.buffer_size = memorySizeBytes";

schema[6] = "TCP.max_threads = int";

schema[7] = "TCP.threading_policy = string";

schema[8] = "log = scope";

schema[9] = "log.dir = string";

schema[10] = "log.level = int";

schema[11] = "timeout = durationSeconds";

str = new StringBuffer();

str.append("timeout = \"infinite\";" + CR);

str.append("log {" + CR);

str.append(" dir = \".\"; # current working directory" + CR);

str.append(" level = \"1\";" + CR);

str.append("}" + CR);

str.append("TCP {" + CR);

str.append(" buffer_size = \"8 KB\";" + CR);

str.append(" threading_policy = \"thread_pool\";" + CR);

str.append(" max_threads = \"10\";" + CR);

str.append("}" + CR);

str.append("SSL {" + CR);

str.append(" buffer_size = \"8 KB\";" + CR);

str.append(" threading_policy = \"thread_pool\";" + CR);

str.append(" max_threads = \"10\";" + CR);

str.append("}" + CR);

str.append("");

}

public String[] getSchema() { return schema; }

public String getString() { return str.toString(); }

private String[] schema;

private StringBuffer str;

private static final String CR= System.getProperty("line.separator");

}

60 CHAPTER 6. THE CONFIG2CPP AND CONFIG2J UTILITIES

-namespace x::y::z

config2j -cfg Fallback.cfg -class FallbackConfig -singleton \

-package com.example.foo

6.3 Using the Generated Class

Let's assume we have converted the �le Fallback.cfg into a Java class
called FallbackConfig with the following command:

config2j -cfg Fallback.cfg -class FallbackConfig -singleton \

-package com.example.foo

Figure 6.3 shows how the FallbackConfig class can be used to provide
fallback con�guration for an application.

Figure 6.3: Example of Using Con�g4J

Configuration cfg = Configuration.create();

String cfgFile = ...

try {

if (cfgFile != null) { cfg.parse(cfgFile); }

cfg.setFallbackConfiguration(Configuration.INPUT_STRING,

FallbackConfig.getString());

} catch(ConfigurationException ex) {

System.out.println(ex.getMessage());

}

The code in Figure 6.3 is straightforward. It parses a con�guration
�le if one was speci�ed by, say, a command-line option or an environ-
ment variable. Afterwards, it calls setFallbackConfiguration() to set
fallback con�guration based on the string in the FallbackConfig class.
Because we had run config2j with the -singleton option, the code can
call FallbackConfig.getString(). If we had not used the -singleton
option, then the code would have had to explicitly create an instance of
the FallbackConfig class, for example:

cfg.setFallbackConfiguration(Configuration.INPUT_STRING,

new FallbackConfig().getString());

6.4 Tweaking the Generated Schema

If you look again at Figure 6.2 on page 59, you will see that the class
generated by config2cpp or config2j provides not just getString() but

6.4. TWEAKING THE GENERATED SCHEMA 61

also getSchema(). The code at the start of the constructor initializes the
schema returned by getSchema().

The config2cpp and config2j utilities employ the following heuristics
to generate a schema from an input con�guration �le.

� Each scope or list variable de�ned in the input con�guration �le
results in a corresponding entry in the schema.

� If an entry in the input con�guration �le is a string variable,
then config2cpp and config2j check to see if the variable's value
can be parsed as one of the built-in types: boolean, int, float,
durationSeconds, and so on. If so, then its schema entry re�ects
that built-in type; otherwise, its schema entry indicates it is of
type string. For example, when parsing Fallback.cfg (Figure 6.1
on page 58), the timeout variable has the value "infinite" so
its schema entry indicates it is of type durationSeconds, and the
TCP.max_threads variable has the value "10" so its schema entry in-
dicates it is of type int (if it had the value "10.0" then its schema
entry would indicate it to be of type float).

Those heuristics work well most of the time. However, they can make
mistakes. As an example, consider the threading_policy variable in
the TCP and SSL scopes of Figure 6.1 on page 58. That has the value
"thread_pool", which might be an enum value rather than merely a
string. As another example, perhaps the log.level variable should
be represented in the schema as being an integer with a limited range of
values, such as int[0,3].

You can provide config2cpp and config2j with instructions on how to
generate the schema. To do this, you need to write another con�guration
�le as shown in Figure 6.4. That �le contains three variables that tweak
the schema-generation heuristics of config2cpp and config2j.

The user_types variable de�nes a list of types that are to be included
in the generated schema. The wildcarded_names_and_types variable is
a three-column table. Within each row of this table, the �rst column
contains a keyword (either @optional or @required), the second column
contains the name of a con�guration variables, and the third column
speci�es its schema type. The meaning of the @optional and @required

keywords will be discussed in Section 9.2.2 on page 102; @optional is
the appropriate keyword to use in most circumstances. The name in the
second column can contain "*", which acts as a wildcard that matches
zero or more characters. Thus, "*.threading_policy" matches both

62 CHAPTER 6. THE CONFIG2CPP AND CONFIG2J UTILITIES

Figure 6.4: The �le SchemaFineTuning.cfg

user_types = [

"@typedef threadingPolicy = enum[thread_pool, thread_per_socket]"

];

wildcarded_names_and_types = [

optional/required wildcarded name Schema type

#--

"@optional", "log.level", "int[0,3]",

"@optional", "*.threading_policy", "threadingPolicy",

];

ignore_rules = [

];

"SSL.threading_policy" and "TCP.threading_policy". The ignore_rules
variable is used to specify ignore rules, which will be discussed in Sec-
tion 9.2.6 on page 109. For the example being discussed, we do not need
any ignore rules, so we set this variable to be an empty list.

Having written that �le, you use the -schemaOverrideCfg command-
line option to pass the �le to config2j or config2cpp:

config2j -cfg Fallback.cfg -class FallbackConfig -singleton \

-package com.example.foo \

-schemaOverrideCfg SchemaFineTuning.cfg

You can see the results in Figure 6.5.
Having generated an accurate schema, we can now use it to perform

schema validation. Figure 6.6 provides an example of this.

6.5 Summary

The config2cpp and config2j utilities read a con�guration �le and gen-
erate a C++ or Java �le that contains a class wrapper around a snapshot
of the �le's contents. These utilities make it easy to generate a con�gu-
ration string that can be embedded in an application. This can be useful
in an embedded system that does not contain a �le system. It is also
useful if you want an application to have fallback con�guration.

The class generated by the config2cpp and config2j utilities can
provide not just embedded con�guration, but also a schema. The built-
in heuristics for generating the schema de�nition work well most of the
time. You can use the -schemaOverrideCfg command-line option to spec-
ify some tweaks for the generated schema.

6.5. SUMMARY 63

Figure 6.5: The e�ects of tweaking the schema

class FallbackConfig

{

public FallbackConfig()

{

schema = new String[13];

schema[0] = "@typedef threadingPolicy = enum[thread_pool,

thread_per_socket]";

schema[1] = "SSL = scope";

schema[2] = "SSL.buffer_size = memorySizeBytes";

schema[3] = "SSL.max_threads = int";

schema[4] = "@optional SSL.threading_policy = threadingPolicy";

schema[5] = "TCP = scope";

schema[6] = "TCP.buffer_size = memorySizeBytes";

schema[7] = "TCP.max_threads = int";

schema[8] = "@optional TCP.threading_policy = threadingPolicy";

schema[9] = "log = scope";

schema[10] = "log.dir = string";

schema[11] = "@optional log.level = int[0,3]";

schema[12] = "timeout = durationSeconds";

... // code to initialize str omitted for brevity

}

...

}

Figure 6.6: Using the generated schema

Configuration cfg = Configuration.create();

SchemaValidator sv = new SchemaValidator();

String scope = ...

String cfgFile = ...

try {

if (cfgFile != null) { cfg.parse(cfgFile); }

cfg.setFallbackConfiguration(Configuration.INPUT_STRING,

FallbackConfig.getString());

sv.parseSchema(FallbackConfig.getSchema());

sv.validate(cfg, scope, "");

} catch(ConfigurationException ex) {

System.out.println(ex.getMessage());

}

64 CHAPTER 6. THE CONFIG2CPP AND CONFIG2J UTILITIES

Chapter 7

The config4cpp and

config4j Utilities

7.1 Introduction

The config4cpp and config4j utilities are command-line utilities that act
as wrappers for their corresponding Con�g4* libraries.1 These utilities
serve several purposes.

First, when you have written or edited a con�guration �le, you can
use config4cpp or config4j to check if the �le has any syntax errors or,
optionally, schema validation errors.

Second, the utilities provide a way for you to �play with� the Con�g4*
API without having to write code. As such, these utilities can shorten
the learning curve for developers.

Finally, the utilities make it possible for a UNIX shell script to re-
trieve information from a Con�g4* �le. This makes it possible to use
Con�g4* to con�gure shell script-based applications.

7.1.1 Basic Operation

The config4cpp and config4j utilities work identically so, for brevity, I
discuss just config4cpp in this chapter.

1The config4cpp utility is a compiled application, while config4j is a Win-
dows batch �le or UNIX shell script that executes the main() operation of the
org.config4j.Config4J class.

65

66 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

You can obtain a usage statement by running config4cpp without
any command-line arguments (or with the -h argument). If you do that,
then it prints a usage statement like that shown in Figure 7.1.

As the usage statement indicates, config4cpp provides the follow-
ing commands: parse, validate, dump, print, type, slist, llist and
dumpSec. Regardless of the command chosen, you must always use the
-cfg <source> command-line argument to specify a source of con�gu-
ration information. The source can be a �le (speci�ed with file.cfg
or file#file.cfg) or a command (speci�ed with exec#...) that, when
executed, prints a con�guration �le to standard output. If the command
contains spaces, then you need to enclose the command in double quotes,
for example:

config4cpp -cfg exec#"curl -sS http://localhost/file.cfg" ...

7.1.2 Commonly Used Options

As discussed in Section 3.4 on page 22, many Con�g4* operations take
two parameters that, when combined, specify the fully-scoped name of
an item in a con�guration �le. For example:

logDir = cfg.lookupString("foo", "log.dir");

The �rst parameters ("foo") speci�es a scope and the second parameter
("log.dir") speci�es a local name within that scope. When using the
config4cpp utility, you use the -scope <...> and -name <...> command-
line options to specify the scope and name parameters for the underlying
operations. For example:

config4cpp -cfg example.cfg print -scope foo -name log.dir

The -scope <...> and -name <...> options both default to empty strings.
And since, internally, Con�g4* merges the two parameters to form a
fully-scoped name, you can specify the fully-scoped name with either
one of the two command-line options, and let the other option have its
default value of an empty string. For example:

config4cpp -cfg example.cfg print -name foo.log.dir

As discussed in Section 3.8 on page 27, Con�g4* de�nes several con-
stants that denote di�erent types of entries found in a con�guration �le.

� CFG_STRING. A string variable.

� CFG_LIST. A list variable.

7.1. INTRODUCTION 67

Figure 7.1: Usage statement for config4cpp

usage: config4cpp -cfg <source> <command> <options>

<command> can be one of the following:

parse Parse and report errors, if any

validate Validate <scope>.<name>

dump Dump <scope>.<name>

dumpSec Dump the security policy

print Print value of the <scope>.<name> variable

type Print type of the <scope>.<name> entry

slist List scoped names in <scope>.<name>

llist List local names in <scope>.<name>

<options> can be:

-h Print this usage statement

-set <name> <value> Preset name=value in configuration object

-scope <scope> Specify <scope> argument for commands

-name <name> Specify <name> argument for commands

-secCfg <source> Override default security policy

-secScope <scope> Scope for security policy

-schemaCfg <source> Source that contains a schema

-schema <full.name> Name of schema in ’-schemaCfg <source>’

-recursive For llist, slist and validate (default)

-norecursive For llist, slist and validate

-filter <pattern> A filter pattern for slist and llist

-types <types> For llist, slist and validate

-expandUid For dump (default)

-unexpandUid For dump

<types> can be one of the following:

string, list, scope, variables, scope_and_vars (default)

<source> can be one of the following:

file.cfg A configuration file

file#file.cfg A configuration file

exec#<command> Output from executing the specified command

68 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

� CFG_VARIABLES. A variable, regardless of whether it is a string or a
list.

� CFG_SCOPE. A scope.

� CFG_SCOPES_AND_VARS. A scope or a variable.

Some operations take one of the above values as a parameter to spec-
ify which type(s) of con�guration entries the operation should process.
When using config4cpp, you use the -type <...> command-line option
to specify one of the above constants; however, you remove the "CFG_"

pre�x from the name of the constant and put the remaining part of the
name in lower case. For example, -type string denotes the CFG_STRING

constant. The default value of this option is -type scopes_and_vars.
The remaining sections of this chapter discuss each of the commands

provided by config4cpp.

7.2 The parse Command

The parse command instructs config4cpp to parse the con�guration �le
speci�ed by -cfg <source> and then terminate. For example:

config4cpp -cfg example.cfg parse

If there is an error in the �le, then config4cpp prints an error message
before it terminates. In this way, the parse command provides a way to
check for syntax errors in a recently created or modi�ed con�guration
�le.

If the �le to be parsed is obtained by -cfg exec#"...", then the
default security policy (shown in Figure 5.1 on page 53) may not be
permissive enough to allow the command to be executed. In such a case,
you have two options.

If you just want to check whether the con�guration �le is syntactically
valid, and you do not care about security policies, then you could execute
the command yourself and save its output into a temporary �le. Then
you could run config4cpp on that temporary �le:

command-that-prints-a-configuration-file > tmp.cfg

config4cpp -cfg tmp.cfg parse

Alternatively, if your aim is to check the suitability of a security
policy, then you should create a �le, say, securityPolicy.cfg that de�nes
the three variables used to specify a security policy: allow_patterns,
deny_patterns and trusted_directories. Then run config4cpp with the
-secCfg <source> and -secScope <scope> command-line options:

7.3. THE VALIDATE COMMAND 69

config4cpp -cfg exec#"..." parse -secCfg securityPolicy.cfg \

-secScope <scope>

The -secScope <scope> option speci�es the scope that contains the
three security-policy variables. If those variables are de�ned in the global
scope then you can omit this command-line option because its value
defaults to an empty string.

7.3 The validate Command

The validate command instructs config4cpp to parse a con�guration �le
and then perform schema validation on a scope within the con�guration
�le. If a validation error is encountered, then a descriptive error message
is printed. This command may seem complex because its use requires
a lot of command-line options. Because of this, I introduce it with an
example.

Let's assume the �le myApplications.cfg (Figure 7.2) contains con-
�guration information for several applications, and you wish to per-
form schema validation for information in scope foo of that �le. To
do this, you will need to de�ne a schema, such as that provided by the
example.fooSchema entry in the schemas.cfg �le (Figure 7.3).

You can perform the schema validation with the following command:

config4cpp -cfg myApplications.cfg validate \

-scope foo \

-schemaCfg schemas.cfg \

-schema example.fooSchema \

-recursive \

-types scope_and_vars

Let's examine each command-line option. The schema validation is per-
formed on the scope speci�ed by the -scope option in the �le speci�ed
by the -cfg option. The schema used is the list of strings provided
by the variable speci�ed by the -schema option in the �le speci�ed by
the -schemaCfg �le. The -recursive option speci�es that the schema
validator should recurse into nested scopes (such as log). The types op-
tion indicates whether the schema validator should perform validation
checks for string variables (-type string), list variables (-type list), all
variables (-type variables), scopes (-type scope), or everything (-type
scope_and_vars).

The -recursive and -types scope_and_vars options are actually de-
fault values so they could have been omitted from the above example. If

70 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

Figure 7.2: The �le myApplications.cfg

foo {

timeout = "5 seconds";

log {

level = "2";

dir = "/tmp";

}

colour = "green";

price_list = [

item colour price

#----------------------------------

"apple", "red", "EUR 0.50",

"widget", "green", "EUR 0.76",

"pen", "blue", "USD 2.99"

];

int_list = ["1", "2", "3"];

temperature = "29 C";

}

bar {

... # details omitted for brevity

}

Figure 7.3: The �le schemas.cfg

example.fooSchema = [

"@typedef colour = enum[red, green, blue]",

"@typedef temperature = float_with_units[C, F, K]",

"@typedef money = units_with_float[USD, EUR, GBP]",

"timeout = durationSeconds",

"log = scope",

"log.level = int[0, 3]",

"log.dir = string[4, 4]",

"colour = colour",

"price_list = table[item,string, colour,colour, price,money]",

"int_list = list[int]",

"temperature = temperature"

];

example.barSchema = [...]; # details omitted for brevity

7.3. THE VALIDATE COMMAND 71

you use the -norecursive option, then the schema validation will exam-
ine only the speci�ed scope�it will not recurse into nested scopes.

Figure 7.4 shows the algorithm used in config4cpp and config4j

to implement the validate command. The code is straightforward. It
initializes some variables from command-line options. Then it creates
two (initially empty) Configuration objects and parses the �les speci�ed
by the -cfg and -schemaCfg options. Finally, it uses a SchemaValidator

object to parse the speci�ed schema and perform schema validation.

Figure 7.4: Algorithm used by the validate command

cfgSource = ... // from -cfg <...>

scope = ... // from -scope <...> (default is "")

name = ... // from -name <...> (default is "")

schemaSource= ... // from -schemaCfg <...>

schemaName = ... // from -schema <...>

isRecursive = ... // from -recursive (default) or -norecursive

types = ... // from -types <...> (default is scope_and_vars)

try {

cfg = Configuration::create();

sv = new SchemaValidator();

schemaCfg = Configuration::create();

cfg.parse(cfgSource);

schemaCfg.parse(schemaSource);

sv.parseSchema(schemaCfg.lookupList(schemaName, ""));

sv.validate(cfg, scope, name, isRecursive, types);

} catch(ConfigurationException ex) {

System.err.println(ex.getMessage());

System.exit(1);

}

The purpose of showing you the code in Figure 7.4 is to illustrate
that config4cpp and config4j are just thin wrappers around the corre-
sponding Con�g4* libraries. This knowledge is important for applica-
tion developers, because it means they can use config4cpp or config4j

to �play with� Con�g4* and its API without needing to write any code.
Doing this can shorten the learning curve.

72 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

7.4 The dump Command

When Con�g4* parses a con�guration �le, it stores information about
scopes and name=value pairs in hash tables. Con�g4* provides a dump()

operation that converts information in the hash tables into the syntax
of a Con�g4* �le. The dump command of the config4cpp utility is a thin
wrapper around the dump() operation.

Figure 7.5 shows a con�guration �le called foo.cfg, and Figure 7.6
shows the output obtained when I ran the following command on a Linux
machine:

config4cpp -cfg foo.cfg dump

Figure 7.5: The �le foo.cfg

foo {

This is a comment

timeout = "10 minutes";

log {

level = "1";

@if (osType() == "windows") {

dir = ".";

} @else {

dir = getenv("HOME") + "/.foo/logs";

}

}

}

Figure 7.6: Output of the dump command

foo {

timeout = "10 minutes";

log {

dir = "/home/cjmchale/.foo/logs";

level = "1";

}

}

If you compare Figures 7.5 and 7.6, you may notice that the output
of dump is di�erent to the input �le in several ways. First, comments are
not preserved. Second, constructs that provide adaptive con�guration

(Section 2.11 on page 14)�such as @if-then-@else statements, function

7.4. THE DUMP COMMAND 73

calls and the concatenation operator ("+")�are not preserved. Finally,
the order of items is not necessarily preserved, for example, the order
of foo.log.level and foo.log.dir is swapped. These di�erences are
a result of how Con�g4* works. When parsing a �le, Con�g4* discards
comments and fully evaluates all expressions so that when a name=value
entry is stored in a hash table, the value is the result of evaluating
an expression, rather than the expression itself. Finally, a hash table
does not preserve the order in which items were added to it. Because
of this, the dump() operation retrieves the items from a hash table in
an unpredictable order, and it sorts the entries based on their names
before processing them. This is why dump() outputs foo.log.dir before
foo.log.level.

By default, the dump command dumps the contents of the root scope
of a Configuration object. However, you can use the -scope and/or
-name command-line options to instruct it to dump just a named scope
or variable. For example,

config4cpp -cfg foo.cfg dump -scope foo.log

outputs the following:

foo.log {

dir = "/home/cjmchale/.foo/logs";

level = "1";

}

and:

config4cpp -cfg foo.cfg dump -name foo.log.dir

outputs the following:

foo.log.dir = "/home/cjmchale/.foo/logs";

The -expandUid and -unexpandUid options instruct dump how to pro-
cess uid- entries. As an example of this, consider the employees.cfg
�le shown in Figure 7.7. The following command results in the output
shown in Figure 7.8:

config4cpp -cfg employees.cfg dump -expandUid

The -expandUid option is actually the default, so it does not need to be
explicitly stated. If you use the -unexpandUid option instead, then uid-

entries are printed with unexpanded names.

74 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

Figure 7.7: The �le employees.cfg

uid-employee {

name = "John Smith";

address = "...";

}

uid-employee {

name = "Mary Jones";

address = "...";

}

Figure 7.8: Result of dumping employees.cfg

uid-000000000-employee {

address = "...";

name = "John Smith";

}

uid-000000001-employee {

address = "...";

name = "Mary Jones";

}

7.5 The dumpSec Command

The name of the dumpSec command is an abbreviation for �dump secu-
rity�. This command displays the allow_patterns, deny_patterns and
trusted_directories of the security policy. Usually, the items displayed
will be those of the default security policy (see Figure 5.1 on page 53).
However, recall from Section 7.2 on page 68, that you can use the -secCfg
and -secScope options of config4cpp to specify a di�erent security pol-
icy.

7.6 The print Command

The print command prints the value of a con�guration variable speci�ed
by the -scope and/or -name options. For example, recall the foo.cfg �le
shown earlier (Figure 7.5 on page 72). The following command:

config4cpp -cfg foo.cfg print -name foo.log.dir

displays:

/home/cjmchale/.foo/logs

7.7. THE TYPE COMMAND 75

The print command di�ers from the dump command in two ways. First,
you can print a variable, but you can dump a variable or a scope. Second,
print displays only the value of a variable, but dump displays name=value
in Con�g4* syntax. For example, the following command:

config4cpp -cfg foo.cfg dump -name foo.log.dir

displays:

foo.log.dir = "/home/cjmchale/.foo/logs";

The print command enables a UNIX shell script to access con�gura-
tion variables in a Con�g4* �le. For example, the following line in a shell
script will create the directory speci�ed by the foo.log.dir variable in
the foo.cfg �le: script:

mkdir -p ‘config4cpp -cfg foo.cfg print -name foo.log.dir‘

If you print a list variable, then each each item in the list is printed
on a separate line. For example, assume the bar.cfg �le contains the
following line:

file_list = ["tmp.txt", "TO_DO.txt", "make.log"];

The following command:

config4cpp -cfg bar.cfg print -name file_list

displays:

tmp.txt

TO_DO.txt

make.log

This one-item-displayed-per-line property makes it easy for a UNIX shell
script to process each item in a list, for example:

for file in ‘config4cpp -cfg bar.cfg print -name file_list‘

do

echo Processing $file

done

7.7 The type Command

The type command displays the type (string, list or scope) of an entry
in a con�guration �le. For example:

76 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

config4cpp -cfg foo.cfg type -name foo

displays:

scope

and

config4cpp -cfg foo.cfg type -name foo.log.level

displays:

string

If the speci�ed item does not exist in the con�guration �le then the type
command displays:

no_value

7.8 The slist and llist Commands

The slist command is a wrapper around listFullyScopedNames(). Like-
wise, llist is a wrapper around listLocallyScopedNames().

These commands list the fully- or locally-scoped names of entries in
the scope speci�ed by the -scope <...> and -name <...> command-line
options. If you let those options have their default values (an empty
string), then the commands will display a sorted list of entries in the
root scope of the con�guration �le.

The -types <...> option speci�es the types of items that the com-
mands should list. For example, -types variables lists the names of
variables, while -types scope lists the names of scopes. The default
value of this option is scope_and_vars, which lists both variables and
scopes.

The -recursive and -norecursive options specify whether the com-
mands should recurse into nested scopes to list their entries. The default
value is -recursive.

The following examples are based on the example.cfg con�guration
�le in Figure 7.9.

The following command:

config4cpp -cfg example.cfg slist -scope example.foo

lists the entries in the example.foo scope and (recursively) in nested
scopes:

7.8. THE SLIST AND LLIST COMMANDS 77

Figure 7.9: The �le example.cfg

example {

foo {

timeout = "infinite";

log {

dir = "/tmp";

level = "1";

}

}

bar {

greeting = "Hello, world";

}

}

example.foo.log

example.foo.log.dir

example.foo.log.level

example.foo.timeout

If you change slist to llist in the above command, and re-run it, then
the output will be as follows.

log

log.dir

log.level

timeout

One of the parameters passed to the listFullyScopedNames() and
listLocallyScopedNames() operations is an array of strings that specify
�lter patterns. Each �lter pattern is a string in which "*" is a wildcard
that matches zero or more characters. An entry will be included in
the returned list only if: (1) the �lters patterns array is empty (thus
indicating that no �ltering is performed); or (2) the (unexpanded form
of the) entry's name matches at least one of the �lter patterns.

You can use the -filter <...> command-line option to specify a
�lter. You can use this option multiple times to specify multiple �lters.

Pattern �lters can be very useful if you are writing an application that
makes use of uid entries in a con�guration �le. As an example, consider
a people.cfg con�guration �le that contains a mixture of uid-friend
and uid-enemy entries within the people scope. The following command
will list just the uid-friend entries:

config4cpp -cfg people.cfg llist -scope people -filter uid-friend

78 CHAPTER 7. THE CONFIG4CPP AND CONFIG4J UTILITIES

The following command will list all the "uid-" entries:

config4cpp -cfg people.cfg llist -scope people -filter "uid-*"

7.9 Summary

The config4cpp and config4j utilities provide command-line wrappers
for operations in the Con�g4* libraries. These utilities serve a few pur-
poses.

First, when you have written or edited a con�guration �le, you can
use the parse command to check if the �le has any syntax errors or, use
the validate command to check it for schema validation errors.

Second, the utilities provide a way for you to experiment with the
Con�g4* API without having to write code. As such, these utilities can
shorten the learning curve for developers. For example:

� The -secCfg and -secScope options enable you to experiment with
de�ning your own security policies.

� The validate command enables you to explore the syntax and
semantics of the schema language.

� The dump command enables you to check if adaptive con�guration
constructs behave the way you think they should.

� The slist and llist commands, and their -filter option, provide
a way for you to experiment with the listFullyScopedNames() and
listLocallyScopedNames() operations. This can be useful if you
need to implement a browser-type application or if you plan to
work with uid entries.

Finally, the print command make it possible for a UNIX shell script
to retrieve information from a Con�g4* �le. This makes it possible to
use Con�g4* to con�gure shell script-based applications.

Part III

Full Details of Syntax

79

Chapter 8

Con�guration File Syntax

8.1 Introduction

This chapter discusses all the syntax acceptable in con�guration �les.
Figure 8.1 provides a formal grammar for most of the syntax but, for
brevity, the grammar omits some de�nitions. For example, the lexi-
cal de�nition of comments, strings and identi�ers are discussed in text
rather than being de�ned in the grammar of Figure 8.1. Likewise, the
string and list functions (denoted by StringFunction and ListFunction

in the grammar) are discussed in text rather than being de�ned in the
grammar.

8.2 Comments

A comment starts with the "#" character and continues until the end of
the line, as shown in the example below:

This is a comment

Comments are removed by the lexical analyser, which is why they are
not mentioned in the formal grammar in Figure 8.1.

8.3 Strings

There are two ways to write a STRING.

81

82 CHAPTER 8. CONFIGURATION FILE SYNTAX

Figure 8.1: Formal grammar of Con�g4* syntax

Notation: | denotes choice, [...] denotes an optional component,
{...}* denotes 0 or more repetitions, and (...) denotes grouping.

configFile = StmtList

StmtList = { Stmt }*
Stmt = IDENTIFIER ("=" | "?=" | "+=") StringExpr ";"

| IDENTIFIER ("=" | "?=" | "+=") ListExpr ";"

| IDENTIFIER "{" StmtList "}" [";"]

| "@include" StringExpr ["@ifExists"] ";"

| "@copyFrom" IDENTIFIER ["@ifExists"] ";"

| "@remove" IDENTIFIER ";"

| "@error" StringExpr ";"

| "@if" "(" Condition ")" "{" StmtList "}"

{ "@elseIf" "(" Condition ")" "{" StmtList "}" }*
["@else" "{" StmtList "}"]

[";"]

StringExpr = String { "+" String }*
String = STRING

| IDENTIFIER

| StringFunction

ListExpr = List { "+" List }*
List = "[" StringExprList [","] "]"

| IDENTIFIER

| ListFunction

StringExprList = empty

| StringExpr "," StringExpr *
Condition = OrCondition

OrCondition = AndCondition { "||" AndCondition }*
AndCondition = TermCondition { "&&" TermCondition }*
TermCondition = ["!"] "(" Condition ")"

| StringExpr "==" StringExpr

| StringExpr "!=" StringExpr

| StringExpr "@in" ListExpr

| StringExpr "@matches" StringExpr

The �rst way is as a sequence of characters enclosed within dou-
ble quotes. Within such a string, "%" acts as an escape character.
The recognized escape sequences are as follows. %n denotes a newline
character. %t denotes a TAB character. %" denotes a double quote.
%% denotes a percent sign. Many programming languages use a back-
slash ("\") as an escape character so the use of "%" may seem strange

8.4. IDENTIFIERS 83

to some people. However, in my experience, using "\" as an escape
character results in awkwardness when writing Windows-style directory
names, such as C:\temp\foo.txt, which normally have to be written as
C:\\temp\\foo.txt. Con�g4* uses "%" as the escape character to avoid
this problem.

The second way to write a string is as a (possibly multi-line) se-
quence of characters enclosed between <% and %>. No escape sequences
are recognised between <% and %>. If the <%...%> notation seems familiar
to some readers it is because this notation is borrowed from Java Server
Pages (JSP). The <%...%> notation is useful if you want to embed, say,
a code segment in a con�guration �le.

You can combine both forms of string by using the string concatena-
tion ("+") operator.

big_string = <%

... // some Java code

%> + "<%" + <%

... // some more Java code

%>

8.4 Identi�ers

An IDENTIFIER is a sequence of one or more of the following characters:
upper- or lower-case letters, digits, a minus sign ("-"), an underscore
("_"), a colon (":"), a period ("."), a dollar sign ($), a question mark
("?"), a forward slash ("/") or a backslash ("\"). There are two com-
ments to be made about this range of allowable characters.

First, one goal of Con�g4* is to support internationalization, so ac-
cented characters (such as "á" and "ö") and ideographs are permitted in
an IDENTIFIER. Likewise, the digits permitted in an IDENTIFIER include
the Roman digits ("0" through to "9") as well as digits used in other
scripts.1

Second, a Con�g4* IDENTIFIER should be able to support names not
just in many human languages, but also names in many computer lan-
guages. For example, ensuring that Foo$Bar, X::Y::Z, and done? are
valid identi�ers makes it possible for a Con�g4* �le to store meta-data
about applications written in many popular programming languages,

1Readers should be forewarned that some implementations of Con�g4* may have
incomplete internationalization support. You can �nd a discussion of this in the
Con�g4* Maintenance Guide.

84 CHAPTER 8. CONFIGURATION FILE SYNTAX

such as C++, Java, Perl and Ruby. Likewise, permitting "/" and "\" in
identi�ers enables a Con�g4* �le to contain meta-data about �le names
and (a useful subset of) URLs.

Con�g4* applies special treatment to any identi�er that starts with
"uid-", for example, uid-foo. The "uid-" pre�x denotes a unique iden-
ti�er ; you can read the motivation for such identi�ers in Section 2.12 on
page 15. Con�g4* modi�es the name of a "uid-" pre�xed variable by
inserting a sequence of nine digits and "-" after "uid-". For example,
uid-foo might be changed to uid-000000042-foo. The nine-digit num-
ber starts at zero and is incremented by one for every encounter of an
identi�er that has a "uid-" pre�x.

If Con�g4* encounters an identi�er starting with "uid-<digits>-",
then the digits are replaced with a newly generated nine-digit number.
This is to ensure correct behaviour in pathological cases such as the
following. Consider a con�guration �le that contains multiple uid-foo
identi�ers. If this �le is parsed and the dump() operation is used to save
the parsed �le to, say, expanded-uid.cfg, then the newly written �le may
contain identi�ers of the form uid-<digits>-foo. Now consider another
�le of the form:

uid-foo { ... };

uid-foo { ... };

uid-foo { ... };

@include "expanded-uid.cfg";

When parsing the above �le, it is necessary to replace the digits of the
uid-foo entries contained in the expanded-uid.cfg �le to ensure they do
not con�ict with the expanded form of the uid-foo entries de�ned before
the @include command.

8.5 Assignment Statements

An unconditional assignment statement takes one the form:

name = value;

A conditional assignment statement takes the form:

name ?= value;

A conditional assignment statement assigns a value to the speci�ed vari-
able only if the variable does not already have a value.

An append assignment statement takes the form:

8.6. SCOPES 85

name += value;

An append assignment statement appends the speci�ed value to an
already-existing variable.

Note that all three forms of the assignment statement are terminated
with a semicolon (";"). A value can be either a string or a list of comma-
separated strings inside matching "[" and "]":

local_domain = "bar.com"; # a string

some_fonts = ["Times", "Courier"]; # a list

some_fonts += ["Garamond"];

You can use the "+" operator to concatenate strings and lists.

host = "foo." + local_domain;

all_fonts = some_fonts + ["Ariel", "Symbol"];

The above example also illustrates that one variable can be de�ned in
terms of a previously de�ned variable. For example, the host variable
is de�ned by concatenating together a string and the local_domain vari-
able.

8.6 Scopes

A con�guration �le can contain named scopes. The following example
de�nes a scope called server that contains several assignment state-
ments.

server {

name = "bankSrv";

timeout = "2 minutes";

diagnostics_level = "2";

}

You can optionally place a semicolon after the closing "}" of a scope.
The reason for this is that a scope looks a bit like a class de�nition in
C++ or Java. A semicolon appears after the class de�nition in C++
but not in Java.

class Foo { ... }; // C++

class Bar { ... } // Java

Being �exible about whether or not a semicolon follows the closing "}"

of a scope makes it easy for people who come from a C++ or Java
background.

86 CHAPTER 8. CONFIGURATION FILE SYNTAX

You cannot use an @include statement (discussed in Section 8.7)
inside a scope. Instead, @include statements can be used only in the
global scope.

The fully scoped name of a variable is its local name pre�xed by the
name of its enclosing scope and separated by ".". In the example at the
start of this section, the fully scoped name of timeout is server.timeout.
Use of scopes enables users to type local (that is, the short form of) names
rather than the longer, fully scoped names. At the start of this section
was an example that made use of a scope. That example is equivalent
to the following, more verbose example, which does not use scopes:

server.name = "bankSrv";

server.timeout = "2 minutes";

server.diagnostics_level = "2";

You can re-open scopes and nest them arbitrarily. For example:

outer {

inner {

foo = "Hello, world";

};

};

outer.inner { # re-opening of scope

bar = "Goodbye, world";

};

When a variable is used in an expression, the search for that variable
usually starts at the current scope and works outwards. You can over-
ride this search order by pre�xing the variable with a dot; this instructs
Con�g4* to look for the speci�ed variable in the global scope. For ex-
ample, the value of outer.inner.food_1 below is "apples and oranges",
while the value of outer.inner.food_2 is "apples and bananas".

fruit = "bananas";

outer {

fruit = "oranges";

inner {

food_1 = "apples and " + fruit;

food_2 = "apples and " + .fruit;

};

};

8.7 The @include Statement

An @include statement instructs Con�g4* to parse the speci�ed con�g-
uration �le.

8.8. THE @COPYFROM STATEMENT 87

@include "/tmp/foo.cfg";

By default, @include reports an error if the speci�ed �le does not
exist. However, if you place "@ifExists" at the end of an @include
statement then @include does not complain about a non-existent �le.

@include "/tmp/foo.cfg" @ifExists;

The @include command can parse not just �les, but also the output
of executing an external command. This is done by using a string of the
form "exec#command" as an argument to @include.

@include "exec#curl -sS http://localhost/someFile.cfg";

By default, @include reports an error if the speci�ed command exits
with an error status. You can instruct Con�g4* to ignore the unsuccess-
ful execution of an @include command by placing "@ifExists" at the
end of the @include statement.

@include "exec#curl -sS http://localhost/someFile.cfg" @ifExists;

Version 1.2 of Con�g4J introduces an additional, and Java-speci�c,
form of the @include statement, in which the �le to be included is spec-
i�ed on the classpath.

@include "classpath#path/to/file.cfg";

8.8 The @copyFrom Statement

The @copyFrom statement takes the following form:

@copyFrom "scope";

This command copies all the variables and nested scopes from the spec-
i�ed scope into the current scope. The typical use of this command
is to copy default values from one scope into several other scopes, as
Figure 8.2 shows.

In this example, the acme.defaults scope contains all the con�gura-
tion variables likely to have similar values in most of the applications
(denoted by the scopes acme.app_1, acme.app_2 and acme.app_3). Then
the scope for a particular application, for example, acme.app_1, uses the
@copyFrom command to copy the values from the acme.defaults scope.
Notice that the acme.app_2 and acme.app_3 scopes copy all the values
from the acme.defaults scope and then selectively override some values.

88 CHAPTER 8. CONFIGURATION FILE SYNTAX

Figure 8.2: Examples of the @copyFrom statement

acme {

defaults {

log {

dir = "C:\acme\logs";

level = "0";

};

timeout = "2 minutes";

thread_pool_size = "5";

};

app_1 {

@copyFrom "acme.defaults";

};

app_2 {

@copyFrom "acme.defaults";

log.level = "1";

};

app_3 {

@copyFrom "acme.defaults";

thread_pool_size = "10";

};

};

When using the @copyFrom statement, you must specify the fully

scoped name of the scope to be copied. For example, the @copyFrom

statements in Figure 8.2 specify the scope as acme.defaults rather than
as just defaults. If a con�guration �le contains deeply nested scopes,
then specifying the fully scoped name of a scope to be copied can result
in undesirable verbosity. However, Section 8.12.6 on page 95 explains
how the siblingScope() function can reduce such verbosity.

By default, @copyFrom reports an error if the speci�ed scope does
not exist. However, if you place "@ifExists" at the end of an @copyFrom
statement then @copyFrom does not complain about a non-existent scope.

@copyFrom "acme.defaults" @ifExists;

The @ifExists form of the @copyFrom command can be used to override
some variables based on, for example, the operating system, the user
running the application or the host on which the application is running.

override.pizza { ... }

override.pasta { ... }

fooSrv {

8.9. THE @IF-THEN-@ELSE STATEMENT 89

Set default values

...

Modify some values for particular hosts

@copyFrom "override." + exec("hostname") @ifExists;

}

8.9 The @if-then-@else Statement

Figure 8.3 shows some examples of @if-then-@else statements.

Figure 8.3: Con�guration �le with advanced features

1 production_hosts = ["pizza", "pasta", "zucchini"];

2 test_hosts = ["foo", "bar", "widget", "acme"];

3

4 @if (exec("hostname") @in production_hosts) {

5 server_x.port = "5000";

6 server_y.port = "5001";

7 server_z.port = "5002";

8 } @elseIf (exec("hostname") @in test_hosts) {

9 server_x.port = "6000";

10 server_y.port = "6001";

11 server_z.port = "6002";

12 } @else {

13 @error "This is not a production or test machine";

14 }

15 @if (osType() == "windows") {

16 tmp_dir = replace(getenv("TMP"), "\", "/");

17 } @else {

18 tmp_dir = "/tmp";

19 }

The conditions used in @if-then-@else statements can be in any of
the following formats.

� "string" == "another string"

� "string" != "another string"

� "string" @in ["a", "list", "of", "string"]

� "string" @matches "pattern". Within the pattern, "*" is a wild-
card that matches zero or more characters. For example, the con-
dition "hello" @matches "*lo" evaluates to true.

90 CHAPTER 8. CONFIGURATION FILE SYNTAX

� condition && condition. This is the boolean AND of two condi-
tions.

� condition || condition. This is the boolean OR of two condi-
tions.

� (condition). The parenthesis are used for grouping.

� !(condition). This is the negation of a condition.

8.10 The @error Statement

The @error statement instructs Con�g4* to stop parsing and instead
report an error.

@error "Something has gone wrong";

Con�g4* reports the error by throwing an exception back to application
code. The application code should communicate the exception's text
message to the user, for example, by writing the text message to a console
or displaying it in a GUI dialog box.

8.11 The @remove Statement

The @remove statement removes a previously-de�ned variable or scope.
To see why the @remove command might be useful, let us assume you
want to specify the full path names of several log �les that happen to
reside in the same directory. It would be tedious to write the full path
name of the directory for each log �le. Instead, you can can de�ne a
temporary variable called, say, _log_dir and used it as follows:

_log_dir = "/path/to/log/dir";

app1_log_file = _log_dir + "/app1.log";

app2_log_file = _log_dir + "/app2.log";

app3_log_file = _log_dir + "/app3.log";

@remove _log_dir;

A useful convention shown in the above example is to use an un-
derscore ("_") at the start of the name of a temporary variable. This
makes it easy to see which variables are �normal� variables and which
are temporary ones that will be removed later.

You may be wondering why temporary variables should be removed
at all. There are two reasons for this. First, unneeded variables clutter

8.12. FUNCTIONS 91

up a con�guration �le and so can cause confusion for users. Second, by
insisting a con�guration �le contain only required variables, an applica-
tion can make use of a schema validator (Chapter 9) that can perform
extensive error checking on the contents of a con�guration �le.

8.12 Functions

Table 8.1 lists the functions that Con�g4* provides.

Table 8.1: Con�g4* functions

Function Return type Section

configFile() string 8.12.5
configType("name") string 8.12.6
exec("command") string 8.12.3
exec("command", "default value") string 8.12.3
fileToDir("/path/to/file.txt") string 8.12.5
getenv("name") string 8.12.2
getenv("name", "default value") string 8.12.2
isFileReadable("fileName.txt") boolean 8.12.6
join(["list", "of", "string"], " ") string 8.12.4
osDirSeparator() string 8.12.1
osPathSeparator() string 8.12.1
osType() string 8.12.1
readFile("/path/to/file.txt") string 8.12.5
replace("\a\b\c", "\", "/") string 8.12.4
siblingScope("name") string 8.12.6
split("red green blue", " ") list 8.12.4

Con�g4* considers the opening "(" to be part of a function name, so
you cannot place a space before it. For example, Con�g4* accepts the
�rst statement below but reports an error for the second statement:

x = configFile(); # okay

y = configFile (); # error

Treating the opening "(" as being part of a function's name might
seem strange, but Con�g4* does this to guarantee that the names of
functions do not con�ict with the names of variables or scopes. This
makes it possible for future versions of Con�g4* to provide additional

92 CHAPTER 8. CONFIGURATION FILE SYNTAX

functions without any risk of the newly added functions causing problems
for existing con�guration �les.

The following subsections discuss the functions in logical groupings.

8.12.1 Querying the Operating System

Some of the built-in functions have names starting with "os", which indi-
cates they return information about the operating system environment.

The osType() function returns "windows" if you are running on a
Microsoft Windows-based computer, and "unix" if you are running on a
UNIX-based computer.

The osDirSeparator() function returns the character that the oper-
ating system uses as a directory separator. This is "\" on Windows and
"/" on UNIX.

The osPathSeparator() function returns the character that the oper-
ating system uses to separate a list of directories. This is ";" on Windows
and ":" on UNIX.

8.12.2 Accessing Environment Variables

The getenv() function enables you to access an environment variable.
This function can take either one or two parameters. The �rst parameter
is the name of the environment variable to access:

example = getenv("FOO_HOME");

The second (and optional) parameter to this function is a default value
that is used if the speci�ed environment variable does not exist:

example = getenv("FOO_HOME", "/tmp");

If you do not specify a default value and the speci�ed environment
variable does not exist then Con�g4* reports an error:

someFile.cfg, line 12: cannot access the ’FOO_HOME’

environment variable

8.12.3 Executing External Commands

The exec() function executes an external command and returns what-
ever text that command writes to its standard output. This function can
take either one or two parameters. The �rst parameter is the external
command to execute, as the following examples illustrate:

8.12. FUNCTIONS 93

example_1 = exec("hostname");

example_2 = exec("ls /tmp");

example_3 = exec("ls " + getenv("HOME", "/"));

The second (and optional) parameter to this function is a default value
that is used if Con�g4* cannot successfully execute the speci�ed external
command:

example = exec("hostname", "localhost");

If you do not specify a default value and Con�g4* cannot successfully
execute the speci�ed external command then Con�g4* reports an error:

someFile.cfg, line 3: exec("ls /x/y/z") failed:

ls: /x/y/z: No such file or directory

8.12.4 Manipulating Strings and Lists

The example below illustrates the split() and join() functions:

colours_and_spaces = "red green blue";

colour_list = split(colours_and_spaces, " ");

colours_and_commas = join(colour_list, ",");

The split() function takes two parameters. The �rst parameter
is a string to be broken up into a list of smaller strings. The second
parameter indicates a search string; the �rst string is broken into list
elements at each occurrence of this search string. In the above example,
colour_list is assigned the value ["red", "green", "blue"].

The join() function is the opposite of split(). It takes two param-
eters; the �rst parameter is a list and the second parameter is a string.
The join() function concatenates all the elements of the list using the
string as a separator. In the above example, colours_and_commas is as-
signed the value "red,green,blue".

In the above example, the overall e�ect of using split() and join()
is to replace all spaces in a string with commas. To make this easier,
Con�g4* provides a replace() function.

colours_and_commas=replace("red green blue", " ", ",");

The replace() function takes three string parameters: original, search
and replacement. This function replaces all occurrences of the search

string in the original string with the replacement string.

94 CHAPTER 8. CONFIGURATION FILE SYNTAX

8.12.5 Files and Directories

The configFile() function does not take any parameters; it returns the
name of the con�guration �le being parsed.

The fileToDir() function takes one parameter�the name of a �le�
and returns the name of the directory in which that �le resides. The
returned directory name is guaranteed to not have "/" or "\" at the end.
For example, fileToDir("/tmp/foo.cfg") returns "/tmp". As the table
in Table 8.2 shows, the fileToDir() function works even for boundary
cases, such as for �les in the root directory of a �le system.

Table 8.2: Example results of calling fileToDir()

filename fileToDir(filename)

"/tmp/foo.cfg" "/tmp" (UNIX and Windows)
"C:\tmp\foo.cfg" "C:\tmp" (Windows only)
"foo.cfg" "." (UNIX and Windows)
"/foo.cfg" "/." (UNIX and Windows)
"\foo.cfg" "\." (Windows only)
"C:\foo.cfg" "C:\." (Windows only)

The combination fileToDir(configFile()) returns the directory in
which the con�guration �le being parsed resides. This can be useful
if you want to write a top-level con�guration �le that includes other
con�guration �les that reside within the same directory.

@include fileToDir(configFile()) + "/file1.cfg";

@include fileToDir(configFile()) + "/file2.cfg";

@include fileToDir(configFile()) + "/file3.cfg";

This technique can work even if the con�guration �le is hosted on a web
server and is being accessed through the curl utility. To see why, let's
assume the top-level con�guration �le is speci�ed as:

exec#curl -sS http://myHost/foo/foo.cfg

Con�g4* will execute that command and then parse its output. During
this parsing, the configFile() function returns:

exec#curl -sS http://myHost/foo/foo.cfg

The fileToDir() function does not check that its parameter is a valid
�le name; rather it just trims its parameter back to the last occurrence
of "/", so the result of fileToDir(configFile()) is:

8.12. FUNCTIONS 95

exec#curl -sS http://myHost/foo

The �rst @include statement in the example appends "/file1.cfg", so
the @include statement becomes:

@include "exec#curl -sS http://myHost/foo/file1.cfg";

One thing to keep in mind is that downloading a multi-part con�gura-
tion �le from a web server will be slower than downloading a monolithic
con�guration �le. It will probably take just a fraction of a second longer
to download the multi-part con�guration �le, so you might think that
such an overhead is insigni�cant. However, in a large organization there
might be thousands of users downloading their applications' con�gura-
tion �les from the same web server. In such an organization, all those
fractions of a second extra overhead might add up to be a signi�cant
overhead.

8.12.6 Miscellaneous Functions

The configType() function takes a string parameter that speci�es the
fully-scoped name of an entry in the con�guration �le. It returns the
value "string" if the entry is a string variable, "list" if the entry is a
list variable, "scope" if the entry is a scope, or "no_value" if there is no
such entry.

The isFileReadable() function takes a string parameter that speci-
�es the name of a �le. It returns true if the �le exists and is readable; it
returns false otherwise. An example of the intended use of this function
is shown below:

files_to_process = ["file1.txt", "file2.txt", "file3.txt"];

@if (isFileReadable("file4.txt")) {

files_to_process = files_to_process + ["file4.txt"];

}

The siblingScope() function takes a string parameter that speci�ed
the local name of a scope that is a sibling of the current scope. It returns
the fully scoped name of the speci�ed scope. This function is provided
to simplify a common use case of the @copyFrom statement that is shown
in Figure 8.4.

It is common for the @copyFrom statement to be used to copy the
contents of a scope that is at the same level of nesting�what I call a
sibling scope. If the sibling scope is deeply nested in the con�guration
�le, then, as shown in Figure 8.4, the @copyFrom statement can be quite

96 CHAPTER 8. CONFIGURATION FILE SYNTAX

Figure 8.4: Verbose @copyFrom statements

acme.uk.london.sales {

defaults {

timeout = "2 minutes";

log.level = "1";

}

app1 {

@copyFrom "acme.uk.london.sales.defaults";

}

app2 {

@copyFrom "acme.uk.london.sales.defaults";

log.level = "0";

}

app3 {

@copyFrom "acme.uk.london.sales.defaults";

log.level = "0";

}

}

verbose. If, later on, the scope hierarchy is renamed (perhaps by being
copy-and-pasted to another part of the con�guration �le), then all the
@copyFrom statements will have to be updated to specify the renamed
sibling scope. Doing this has be tedious and error-prone.

Figure 8.5 shows the con�guration �le after it has been modi�ed to
make use of the siblingScope() function. The @copyFrom statements
in this modi�ed �le are more concise and easier to visually verify for
correctness. In addition, if the acme.uk.london.sales scope is renamed,
then the @copyFrom statements will continue to work without any need
for updating.

8.12. FUNCTIONS 97

Figure 8.5: Using siblingScope() to get concise @copyFrom statements

acme.uk.london.sales {

defaults {

timeout = "2 minutes";

log.level = "1";

}

app1 {

@copyFrom siblingScope("defaults");

}

app2 {

@copyFrom siblingScope("defaults");

log.level = "0";

}

app3 {

@copyFrom siblingScope("defaults");

log.level = "0";

}

}

98 CHAPTER 8. CONFIGURATION FILE SYNTAX

Chapter 9

The Con�g4* Schema

Language

9.1 Introduction

A schema is a blueprint or de�nition of a system. For example, a
database schema de�nes the layout of a database: its tables, the columns
within those tables, and so on. It is common (but not a requirement)
for a schema to be written in the same syntax as the system it de�nes.
For example, a database's schema might be stored within a table of the
database itself.

Another technology that uses schemas is XML. The �rst schema lan-
guage for XML was called document type de�nition (DTD). Many people
felt DTD was su�cient to de�ne schemas for text-oriented XML docu-
ments, which tend to have a simple structure, but not �exible enough
to de�ne schemas for more structured, data-oriented XML documents.
Because of this, several competing XML schema languages were de�ned,
including XML Schema and RELAX NG.

By itself, a schema it not very useful; you also need to have a
piece of software, called a schema validator, that can compare a sys-
tem (database, XML �le or whatever) against the system's schema def-
inition and report errors. Within the Con�g4* library is a class called
SchemaValidator that, as its name suggests, implements a schema val-
idator. Application developers can use this to automate useful validity
checks on con�guration information.

99

100 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

As you read this chapter, you may wish to test some of the examples
to ensure you fully understand the semantics of the schema language.
You do not need to write any code to do such testing. Instead, you can
use the validate command of the config4cpp or config4j utilities to test
a schema. Section 7.3 on page 69 discusses how to use that command.

9.2 Syntax

A Con�g4* schema consists of an array of strings. The grammar for a
string within a schema is shown in Figure 9.1. As can be seen, a string
within a schema can be one of the following: an identi�er rule, an ignore
rule or a type de�nition.

Figure 9.1: Formal grammar of the Con�g4* schema language

Notation: | denotes choice, and {...}* denotes 0 or more repetitions.

stringInSchema = idRule | ignoreRule | TypeDefinition

idRule = OptOrReq Name ’=’ TypeName OptArgList

OptOrReq = empty | ’@optional’ | ’@required’

ignoreRule = ’@ignoreScopesIn’ Name

| ’@ignoreVariablesIn’ Name

| ’@ignoreEverythingIn’ Name

TypeDefinition = ’@typedef’ TypeName ’=’ TypeName OptArgList

OptArgList = empty | ’[’ ArgList ’]’

ArgList = empty | Arg { ’,’ Arg }*
Arg = IDENTIFIER | STRING

Name = IDENTIFIER

TypeName = IDENTIFIER

9.2.1 Identi�er Rules

An identi�er rule speci�es the permissible type of an item of con�gura-
tion information. This can be illustrated with an example. Let's assume

9.2. SYNTAX 101

you are writing an application that requires con�guration information
like that shown in Figure 9.2. A suitable schema for this con�guration
is shown (in Java syntax) in Figure 9.3. Each string in that schema is
an identi�er rule; it speci�es the permitted type for a named item of
con�guration information. For example, the �rst rule in Figure 9.3 spec-
i�es that timeout is of type durationMilliseconds, and the fourth rule
speci�es that log is a scope.

Figure 9.2: Example con�guration for an application

timeout = "2 minutes";

fonts = ["Times Roman", "Helvetica", "Courier"];

background_colour = "white";

log {

dir = "C:\foo\logs";

level = "1";

}

Figure 9.3: Schema for the example con�guration shown in Figure 9.2

String[] schema = new String[] {

"timeout = durationMilliseconds",

"fonts = list[string]",

"background_colour = enum[grey, white, yellow]",

"log = scope",

"log.dir = string",

"log.level = int[0, 3]"

};

The simplest form of an identi�er rule is name=type. The type can be
optionally followed by a list of arguments. The use of arguments is illus-
trated by the rules for fonts, log.level and background_colour in Fig-
ure 9.3. In the rule for fonts, the argument speci�es that each item in the
fonts list should be interpreted as a string, rather than, say, a boolean

or int. In the rule for log.level, the arguments specify minimum and
maximum values for the integer. In the rule for background_colour, the
enum type speci�es an enumeration of allowable values, which is indicated
by its list of arguments.

102 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

9.2.2 The @optional and @required Keywords

You can optionally use one of the keywords @optional or @required at
the start of an identi�er rule. For example:

String[] schema = new String[] {

"x = string", // defaults to @optional

"@optional y = string",

"@required z = string"

};

If you do not specify one of those keywords, then the default behaviour
is as if you had speci�ed @optional.

The semantics of @required are that the speci�ed entry must be
present in the con�guration scope being validated. Conversely, the se-
mantics of @optional are that the speci�ed entry may be (but is not
required to be) in the scope being validated.

The default semantics of entries being optional means that a schema
works well with both fallback con�guration (Section 3.6.3 on page 25)
and default parameters passed to lookup-style operations (Section 3.7
on page 27).

The semantics of "uid-" entries are that they may appear zero or
more times. Because of this, "uid-" entries are intrinsically optional. If
you try to use @required with a "uid-" entry, then the schema validator
throws an exception message.

9.2.3 De�ning a New Type

A type de�nition de�nes a new type in terms of an existing type. As an
example of this, Figure 9.4 shows a revised schema for the con�guration
previously shown in Figure 9.2. This revised schema de�nes two new
types, colour and logLevel, and then uses them to specify the types of
the background_colour and log.level variables.

The ability to de�ne new types serves two purposes. First, it helps
to ensure consistency if you need to use a type�such as colour or
logLevel�for several variables in a schema. Second, and more impor-
tantly, it enables you to work around a limitation in the syntax of the
schema language. To understand this, let's assume the colour_list vari-
able in a con�guration �le speci�es a list of colours. You cannot specify
this in a schema with the following:

String[] schema = new String[] {

"colour_list = list[enum[gray, white, yellow]]"

};

9.2. SYNTAX 103

Figure 9.4: Alternative schema for the example con�guration shown in
Figure 9.2 on page 101

String[] schema = new String[] {

"@typedef colour = enum[gray, white, yellow]"

"@typedef logLevel = int[0, 5]",

"timeout = durationMilliseconds",

"fonts = list[string]",

"background_colour = colour",

"log = scope",

"log.dir = string",

"log.level = logLevel"

};

This is because the schema syntax does not permit the nesting of argu-
ment lists. You can work around this syntactic limitation with the aid
of a @typedef statement, as shown below:

String[] schema = new String[] {

"@typedef colour = enum[gray, white, yellow]",

"colour_list = list[colour]"

};

9.2.4 Available Schema Types

A complete list of the built-in schema types are shown in Table 9.1.
One of the types in Table 9.1 is scope, which, as its name suggests,

indicates that an entry in a con�guration �le is a scope. All the remaining
types in the table fall into two categories: string-based types and list-
based types. I discuss those in the following subsections.

9.2.4.1 String-based Types

The boolean type is a string in which only the values "true" and "false"

are valid. The boolean type does not take any arguments.
The int and float types are strings that can be parsed as integer

and �oating-point numbers. By default, these types have no limit on
the range of acceptable values. However, both types can take a pair of
arguments that specify a minimum and maximum range of acceptable
values. For example, int[0, 5] requires an integer in the range zero to
�ve.

By default, the string type does not place any restriction on the
length of a string value. However, string can take a pair of arguments

104 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

Table 9.1: Built-in schema types

Type Explanation

boolean "true" or "false"
durationMicroseconds∗ A duration of time
durationMilliseconds∗ A duration of time
durationSeconds∗ A duration of time
enum[name1, ...] A enumeration of the speci�ed

names
float∗ A decimal number
float_with_units[units1, ...] "<float> <units>"

int∗ An integer number
int_with_units[units1, ...] "<int> <units>"

list[type] A list of the speci�ed type
memorySizeBytes∗ Memory size expressed as one

of: byte, bytes, KB, MB or GB
memorySizeKB∗ Memory size expressed as one

of: KB, MB, GB or TB
memorySizeMB∗ Memory size expressed as one

of: MB, GB, TB or PB
scope A scope
string∗ A string
table[name1, type1, ...] A table containing columns of

the speci�ed names and types
tuple[name1, type1, ...] A tuple containing named en-

tries of the speci�ed types
units_with_float[units1, ...] "<units> <float>"

units_with_int[units1, ...] "<units> <int>"
∗This type can take an optional [min, max] pair of arguments.

that specify a minimum and maximum length for a string. For example,
string[2,5] requires a string between two and �ve characters long.

The enum type requires one or more arguments. The arguments de-
note valid values for the enum type. For example:

String[] schema = new String[] {

"@typedef colour = enum[grey, white, yellow]",

...

};

9.2. SYNTAX 105

The int_with_units type requires one or more arguments, which
specify a enumeration of allowable units. For example, to accept temper-
ature values in the forms "27 Celsius" and "81 Fahrenheit" then you
could de�ne a temperature type as follows:

String[] schema = new String[] {

"@typedef temperature = int_with_units[Celsius, Fahrenheit]",

...

};

As you might expect, the float_with_units type is similar to the int_

with_units type, except that the numeric value can be a �oating-point
number instead of an integer.

The int_with_units and float_with_units types are ideal if the unit
is speci�ed after the numeric value. If the unit is speci�ed before the nu-
meric value then you should use the units_with_int or units_with_float
type instead. For example:

String[] schema = new String[] {

"@typedef money = units_with_float[EUR, GBP, USD]",

...

};

Later, in Section 9.2.5 on page 108, I will explain how to de�ne a schema
so that currency symbols (such as €, ¿ and $) can be used instead of
currency names.

The memorySizeBytes, memorySizeKB and memorySizeMB types are built
on top of float_with_units. The acceptable units you can use with
memorySizeBytes are byte, bytes, KB, MB and GB. The acceptable units
for memorySizeKB are KB, MB, GB and TB. And the acceptable units for
memorySizeMB are MB, GB, TB and PB. The memory-size types can take
a pair of arguments that specify minimum and maximum sizes, but a
discussion of this is deferred until Section 9.2.5 on page 108.

The duration types (durationMicroseconds, durationMilliseconds

and durationSeconds) are built on top of float_with_units, but they
also accept the value "infinite". The acceptable units for use with the
duration types are as follows:

durationMicroseconds: microsecond, millisecond, second and minute.

durationMilliseconds: millisecond, second, minute, hour, day and week.

durationSeconds: second, minute, hour, day and week.

106 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

You can also specify the plural forms of duration units, for example,
milliseconds instead of millisecond.

The duration types can take a pair of arguments that specify mini-
mum and maximum durations, but a discussion of this is deferred until
Section 9.2.5 on page 108.

9.2.4.2 List-based Types

There are three list-based schema types: list, tuple and table. I will
discuss each in turn.

The list type takes a single argument that denotes the type for every
item in the list. For example, the schema below indicates that variable x
is a list of strings, variable y is a list in which each item is an integer,
and variable z is a list in which each item is of type money:

String[] schema = new String[] {

"@typedef money = units_with_float[EUR, GBP, USD]",

"x = list[string]",

"y = list[int]",

"z = list[money]",

...

};

The tuple type uses a list to emulate a compound data structure,
akin to a Pascal record, a C/C++ struct, or a POJO (that is, a Plain
Old Java Object). For example, consider the following C++ type:

struct person {

string name;

int age;

float height;

};

In a con�guration �le, we might wish to represent person data structures
as follows:

employee = ["John Smith", "42", "186 cm"];

manager = ["Sam White", "39", "170 cm"];

Notice that both of the above lists contain three items that correspond
to the name, age and height �elds of the C++ struct. We can validate
those lists by using the tuple type, which takes one or more pairs of
arguments that denote the type and name of a �eld within the struct:

String[] schema = new String[] {

9.2. SYNTAX 107

"@typedef size = float_with_units[cm, m, inches, feet]",

"@typedef person = tuple[string,name, int,age, size,height]",

"employee = person",

"manager = person",

};

The arguments to a tuple specify not just the type of each item in the
list, but also the name of that item. This enables the schema validator
to produce informative error messages. As an example of this, assume
that the example.cfg �le contains the following:

foo {

employee = ["John Smith", "42", "hello"];

manager = ["Sam White", "39", "170 cm"];

}

If we perform a schema validation on the foo scope, then we will receive
the following error message:

example.cfg: bad size value (’hello’) for element 3 (’height’) of the

’foo.employee’ person: should be in the format ’<float> <units>’ where

<units> is one of: ’cm’, ’m’, ’inches’, ’feet’

To understand the table type, consider the following example:

people = [

name age height

#-------------------------------

"John Smith", "42", "186 cm",

"Sam White", "39", "170 cm",

];

Syntactically, the people variable is a list of strings. However, the list is
formatted to look like a table that consists of several rows, each of which
contains three columns. The comment at the top indicates the name for
each column. A suitable schema for this can be de�ned with the table
type, as shown below:

String[] schema = new String[] {

"@typedef size = float_with_units[cm, m, inches, feet]",

"people = table[string,name, int,age, size,height]"

};

The arguments of the table type are speci�ed as pairs that indicate
the type and name of each column in the table. If the schema validator
encounters an error, then the error message indicates the row and column
number of the invalid item, plus the name of the column. For example,
if we replace "186 cm" in the �rst row of the example table, then the
schema validator will report the following error:

108 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

example.cfg: bad size value (’hello’) for the ’height’ column in row 1

of the ’people’ table: should be in the format ’<float> <units>’ where

<units> is one of: ’cm’, ’m’, ’inches’, ’feet’

9.2.5 Using String-based Arguments

The schema grammar shown in Figure 9.1 on page 100 indicates that an
argument used in a rule can be an identi�er or a string literal. In the
example below, the arguments are identi�ers:

String[] schema = new String[] {

"fonts = list[string]",

"background_colour = enum[grey, white, yellow]",

"log.level = int[0, 3]"

};

It is common to think of identi�ers as being textual names, so string,
grey, white and yellow are clearly identi�ers. However, the de�nition of
an identi�er given in Section 8.4 on page 83 indicates that numbers are
also classi�ed as identi�ers. Thus, the arguments 0 and 3 used in the
de�nition of log.level are identi�ers.

The schema grammar permits string literals to be used (instead of
identi�ers) for arguments. Thus, the above example could be written in
as follows:

String[] schema = new String[] {

"fonts = list[\"string\"]",

"background_colour = enum[\"grey\", \"white\", \"yellow\"]",

"log.level = int[\"0\", \"3\"]"

};

As you can see, the need to escape the double quotes makes this syntax
somewhat cumbersome. For this reason, it is common to write arguments
as identi�ers rather than as string literals whenever possible. However,
sometimes it is necessary to write arguments as strings. Two examples
come to mind.

First, use of string literals enables schema validation for strings that
contain scienti�c or currency symbols. Thus, the following schema:

String[] schema = new String[] {

"money = units_with_float[\"€\", \"£\", \"$\"]"

};

can validate a variable such as:

9.2. SYNTAX 109

money = "£19.99";

Second, you need to use string literals if you want to express minimum
and maximum values for memory sizes or durations:

String[] schema = new String[] {

"timeout = durationSeconds[\"10 seconds\", \"5 minutes\"]",

"RAM_size = memorySizeMB[\"512 MB\", \"4 GB\"]"

};

9.2.6 Ignore Rules

There are many �framework� libraries that simplify the development of
speci�c types of software, such as GUI applications or client-server ap-
plications. Let's assume you are developing a framework library called
YAF (an acronym for �Yet Another Framework�). YAF provides useful
built-in functionality, but it also has a documented plug-in architecture,
so extra functionality can be added easily by third-party companies.

A YAF-based application is likely to require con�guration informa-
tion for all of the following: (1) the core functionality of YAF; (2) each
plug-in that is loaded by YAF; and (3) application-level code. Because
you are the developer of YAF, you can de�ne a schema for the con�g-
uration variables required for (1). However, you are unable to predict
what the schema should be for (2) or (3). The ignore schema statements,
which I will discuss in this section, make it possible for you to write a
schema that can validate the con�guration information for (1) while ig-
noring con�guration information for (2) and (3). Then, the developer
of a plug-in can write another schema to validate the con�guration in-
formation for that plug-in. Likewise, an application developer can write
another schema to validate the con�guration information speci�c to the
application code. To illustrate this, consider the example con�guration
�le shown in Figure 9.5, and its schema shown in Figure 9.6.

The application and plugins scopes store con�guration informa-
tion for application-level code and plugins. The "@ignoreEverythingIn

application" rule instructs the schema validator to ignore everything
(that is, variables and nested scopes) in the application scope. The
"@ignoreScopesIn plugins" rule instructs the schema validator to ig-
nore nested scopes in the plugins scope. By not ignoring variables in
that scope, the schema can validate the plugins.load variable.

There is a third ignore command called @ignoreVariablesIn. That
command instructs the schema validator to ignore variables (but not

110 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

Figure 9.5: Example con�guration for an application built with YAF

foo {

timeout = "2 minutes";

fonts = ["Times Roman", "Helvetica", "Courier"];

log {

dir = "C:\foo\logs";

level = "1";

}

application { ... }

plugins {

load = ["tcp", "shared_memory"];

tcp {

host = "localhost";

port = "5050";

buffer_size = "8 KB";

}

ssl { ... }

shared_memory { ... }

}

}

Figure 9.6: Schema for the con�guration shown in Figure 9.5

String[] schema = new String[] {

"timeout = durationMilliseconds",

"fonts = list[string]",

"log = scope",

"log.dir = string",

"log.level = int[0, 3]",

"application = scope",

"@ignoreEverythingIn application",

"plugins = scope",

"plugins.load = list[string]",

"@ignoreScopesIn plugins",

};

nested scopes) in the speci�ed scope. That command is provided for
completeness, but I have not (yet) found a non-contrived use for it.

If you use the config2cpp and config2j utilities to generate a schema
from a fallback con�guration �le, then those utilities use built-in heuris-
tics to decide what the schema should be. However, as discussed in
Section 6.4 on page 60, you can use a second con�guration �le, such as

9.3. USING CODE TO DEFINE SCHEMA TYPES 111

that shown in Figure 6.4 on page 62, to tweak the generated schema.
This second con�guration �le has an ignore_rules con�guration vari-
able that you can use to specify a list of ignore rules that will then be
copied into the generated schema.

9.3 Using Code to De�ne Schema Types

Let's assume you routinely write applications that obtain, say, email
addresses and dates from con�guration �les. Unfortunately, Con�g4*
does not have built-in schema types for email addresses or dates. Because
of this, you may decide to write application code to perform the necessary
validation checks. Although this approach will work, you will end up
cluttering application code with hand-written validation checks. It would
be preferable for emailAddress and date to be built-in types for the
schema validator. This raises two interesting questions.

Question one: why doesn't the schema validator have emailAddress

and date types? The answer is a combination of three reasons. First,
I have not needed those types in my own projects so far, and I don't
have the time to be adding support for types that I (or my colleagues
or customers) may not need. Second, there are many di�erent (and
sometimes con�icting) standardised ways to write a date, and I don't
know which ones I should support in a date type. Finally, I realised that
I cannot hope to predict all the schema types that somebody, somewhere,
will require.

Question two: is it possible to add those types to the schema valida-
tor? The answer is yes. The schema validator has an API that enables
people to extend it with new schema types. You will �nd the full details
of how to do this in the Con�g4* A++ API and Con�g4* Java API

manuals.

9.4 Summary

Con�g4* provides a schema language that you can use to de�ne the en-
tries permitted within the con�guration scope for an application. An ap-
plication can use the SchemaValidator class to validate its con�guration
scope against the schema. If a schema validation error is encountered,
then a ConfigurationException that indicates the error is thrown.

The schema language is concise and simple to learn. It has many
built-in types, plus an API that enables developers to add types speci�c

112 CHAPTER 9. THE CONFIG4* SCHEMA LANGUAGE

to their needs. The schema language also provides several ignore rules
that enable the entries in a nested scope to be ignored during schema
validation. A motivating use of this is to enable schema validation for a
framework library to ignore con�guration entries speci�c to plug-ins or
application-level code.

Part IV

E�ective Use of Con�g4*

113

Chapter 10

Best Practices

10.1 Introduction

Much of this manual is concerned on what you can do with Con�g4*.
This chapter and the following ones are concerned with what you should

do. This chapter o�ers advice on best practices that can help you use
Con�g4* e�ectively.

10.2 Use a Top-level Scope for Each Appli-

cation

Before you started using Con�g4*, you probably thought, �My applica-
tion has a con�guration �le.� Now that you are using Con�g4*, you
should adjust your thinking to be, �My application has a scope within

a con�guration �le.� By doing this, you make it possible for several
applications to share one con�guration �le. In practice, many people
will be content to have a separate con�guration �le for each applica-
tion they use. However, it is easy to imagine some people preferring to
combine the con�guration of several (presumably related) applications
in one con�guration �le.

Some other con�guration technologies, such as XML and Java proper-
ties �les, do not provide good support for one �le to contain information
for several applications. If your have prior experience with one of these
technologies, then it may seem strange at �rst to con�ne your applica-
tion to one scope within a con�guration �le, but you will soon get used

115

116 CHAPTER 10. BEST PRACTICES

to it and appreciate its �exibility. At the other extreme is the Windows
Registry, which is a con�guration source for all applications running on
a PC. Many people dislike the monolithic nature of the Windows Reg-
istry and they may feel wary of sharing one con�guration �le between
multiple applications. I am not advocating that all the applications on
a computer must share a single con�guration �le. Rather, I am saying
that developers should not force users to adopt a particular granularity
of con�guration, such as a separate �le for each application or one �le
shared by all applications. It is better to leave the choice of granularity
to the users.

When using Con�g4*, it is trivial to design an application so it can
obtain its con�guration from a scope within a con�guration �le. To
do this, you ensure the application can accept command-line arguments
that specify both the con�guration �le and its scope within that �le.

myApp.exe -cfg foo.cfg -scope foo

Then you use the values obtained from those command-line arguments
as parameters when calling parse() and the lookup-style operations.

cfg = Configuration::create();

cfg.parse(cfgFile);

logDir = cfg.lookupString(scope, "log.dir");

It is as simple as that.
By the way, the command-line options do not have to be called -cfg

and -scope; those names are used just as examples. Also, you might
prefer to use something other than command-line options, such as en-
vironment variables or the Windows Registry, to get the name of the
con�guration �le and the scope within it.

Perhaps an application will default to using its own name as its
con�guration scope so users are not forced to specify the -scope op-
tion all the time. If so, then it is important that this is a default

name for the scope rather than a hard-coded name. This is because
some users may wish to create several con�gurations for an application.
For example, a user might create scopes called foo-no-diagnostics and
foo-with-diagnostics for an application called Foo.

10.3 Naming Convention for Variables

If your application has only a few con�guration variables, then you do not
need to put much thought into a naming convention for those variables.

10.3. NAMING CONVENTION FOR VARIABLES 117

However, the number of con�guration variables used by your application
is likely to increase over time. If your application consists of some core
functionality plus optional plug-ins (perhaps packaged as UNIX shared
libraries, Windows DLLs or Java classes), then you are likely to need
con�guration variables not just for the core functionality of the applica-
tion but also for each of its optional plug-ins. For example, I know of
a product with plug-ins that has over 600 con�guration variables. Most
of those con�guration variables have sensible default values, so users do
not need to be concerned with that vast quantity of con�guration vari-
ables. However, the developers of that product had to use a consistent
naming scheme to ensure that the names of con�guration variables used
by one plug-in did not clash with the names of con�guration variables
used by other plug-ins.

Regardless of whether your application is split over several plug-ins
or is packaged as one monolythic executable, your application can be
thought of as a collection of logical subsystems. The way to avoid name
clashes is to use the name of logical subsystems as pre�xes on the names
of con�guration variables. My preference is to use nested scopes for each
logical subsystem within an application, and use the top-level scope for
con�guration variables that do not neatly �t into any logical subsystem:

foo {

idle_timeout = "5 minutes";

log {

file = "/tmp/fooSrv.log";

level = "2";

}

database {

host = "...";

username = "...";

password = "...";

}

}

Some readers may dislike the indentation caused by nested scopes in the
above example. and may prefer a �atter �look and feel� to a con�guration
�le. That is easily achieved by using "." (the scoping operator) instead
of explicitly opening scopes:

foo {

idle_timeout = "5 minutes";

log.file = "/tmp/fooSrv.log";

log.level = "2";

database.host = "...";

118 CHAPTER 10. BEST PRACTICES

database.username = "...";

database.password = "...";

}

Within a logical subsystem, you should use a consistent convention
for compound names, for example, a_compound_name or aCompoundName.

10.4 Fail-fast Con�guration

Fail fast [Sho04] is a principle of software design. Its essence is that
when a problem occurs, an application should fail as soon as possible
and in a visible manner, for example, by printing an informative error
message. This makes it easier to �nd and �x bugs (or miscon�guration)
which, in turn, leads to more robust applications.

At �rst sight, the fail-fast principle appears to be in con�ict with the
use of default (or fallback) con�guration values. To see why, consider
the following statements.

str1 = cfg.lookupString(scope, "log.file");

str2 = cfg.lookupString(scope, "log.file", "foo.log");

If the log.file variable does not exist, then the �rst statement throws an
exception that contains an informative error message. This is in keeping
with the fail-fast principle. In contrast, the second statement returns
the speci�ed default value. Returning a default value is appropriate
behaviour if the con�guration variable does not exist. But what if the
con�guration variable was just misspelt (perhaps as log.File instead of
log.file)? In this case, the misspelling goes undetected, so the fail-fast
principle is violated and the application writes to the wrong log �le.

Thankfully, the schema validation capabilities of Con�g4* (provided
by the SchemaValidator class) can detect misspelt names of con�guration
variables and so enable you to adhere to the fail-fast principle despite
the use of default (or fallback) con�guration. You can �nd an overview
of schema validation in Section 3.10 on page 31, and a more complete
discussion in Chapter 9.

10.5 Zero Con�guration

Zero con�guration is a term used with both software and hardware. It
refers to a piece of software or hardware that is con�gurable, but can

10.6. SCHEMAVALIDATION FOR FALLBACK CONFIGURATION119

work �out of the box� without the need for an explicit con�guration step.
Zero con�guration is prized because it facilitates ease of use.

It is trivial for a Con�g4*-enabled application to be enabled for zero
con�guration. This is achieved by the application using fallback con�g-

uration (Section 3.6.3 on page 25) so the application can work without
the need for external con�guration. This technique is illustrated by some
of the demos, which are discussed in Chapter 11.

When writing the fallback con�guration for an application, keep in
mind that the fallback con�guration can make use of the adaptive con-
�guration capabilities of Con�g4* (Section 2.11 on page 14). In this
way, the fallback con�guration can take account of the operating sys-
tem, hostname and username of the person running the application.

10.6 Schema Validation for Fallback Con�g-

uration

Ideally, you should perform schema validation on all sources of con�gu-
ration information for an application. For example, if you are developing
a zero-con�guration application, then you should perform schema vali-
dation not just on the application's optional con�guration �le, but also
on its fallback con�guration. However, this raises a practical problem,
as I now discuss.

I explained in Section 9.2.2 on page 102, that the identi�er rules in a
schema can be either @optional or @required; if neither is speci�ed, then
the default behaviour is @optional. The problem is that we need every
identi�er rule to have both the @optional and @required semantics:

� The zero-con�guration nature of the application means that, when
performing schema validation on the application's con�guration
�le, all the identi�er rules in the schema should have the @optional
semantics.

� In contrast, when performing schema validation on the applica-
tion's fallback con�guration, all the identi�er rules in the schema
should have the @required semantics.

To support these con�icting requirements, the validate() operation
of the SchemaValidator class can take an optional forceMode parame-
ter that �forces� all the identi�er rules to have either the @optional or
@required semantics. The use of this parameter is illustrated in Fig-
ure 10.1.

120 CHAPTER 10. BEST PRACTICES

Figure 10.1: Specifying a �force mode� for schema validation

1 String schema[] = new String[] {

2 "idle_timeout = durationMilliseconds",

3 "log_level = int[0, 5]",

4 "log_file = string"

5 };

6 String cfgFile = ...; // set from a command-line option

7 String scope = ...; // set from a command-line option

8 Configuration cfg = Configuration.create();

9 try {

10 if (cfgFile != null) {

11 cfg.parse(cfgFile);

12 }

13 cfg.setFallbackConfiguration(Configuration.INPUT_STRING,

14 FallbackConfig.getString());

15 SchemaValidator sv = new SchemaValidator();

16 sv.parseSchema(schema);

17 sv.validate(cfg, scope, "", SchemaValidator.FORCE_OPTIONAL);

18 sv.validate(cfg.getFallbackConfiguration(), "", "",

19 SchemaValidator.FORCE_REQUIRED);

20 } catch(ConfigurationException ex) {

21 System.out.println(ex.getMessage());

22 }

Schema validation of the application's con�guration �le (line 16) uses
FORCE_OPTIONAL to ensure that all the identi�er rules have the @optional

semantics. (Actually, doing this is unnecessary in the example shown
because all the identi�er rules in the schema (lines 1�5) have @optional

semantics by default.) Then, schema validation of the fallback con-
�guration (lines 18�19) uses FORCE_REQUIRED. Doing this ensures that
an exception will be thrown if the fallback con�guration is incomplete.
Such an exception will be noticed during application development, which
means that the problem of incomplete fallback con�guration can be rec-
ti�ed long before the application is shipped to customers or deployed in
a production environment.

10.7 Working with Lists

Con�g4* provides operations to lookup a string and convert it to another
commonly used type. For example, lookupInt() calls lookupString()

10.7. WORKING WITH LISTS 121

and tries to convert the returned string to an integer. However, Con-
�g4* does not provide operations to obtain a list of strings and convert it
to a list of other built-in types. For example, Con�g4* does not provide
lookupListOfInt() or lookupListOfBoolean(). Con�g4* could provide
such operations, but this would not be su�cient because some appli-
cations would want to lookup a list of mixed types, for example, a list
in which the �rst element is a string, the next element is an integer,
the next a duration and so on. Instead, Con�g4* provides lower-level
functionality that enables developers to write their own �lookup a list of
exactly what I want� operations.

Perhaps the easiest way to check that a list variable contains ex-
actly what you want is to use the SchemaValidator class to validate
it. However, Con�g4* does provide operations that enable you to per-
form validation checks and data-type conversion on individual elements
of a list. It is useful to be aware of the existence of these operations,
in case you ever need them. Some operations have names of the form
is<Type>(), for example, isBoolean() and isInt(). These operations
take a string parameter and return a boolean indicating if the supplied
string can be converted to the relevant type. Some other operations
have names of the form stringTo<Type>(), for example, stringToInt()
and stringToBoolean(). Here is the Java signature for one such opera-
tion.

int stringToInt(String scope,

String localName,

String str) throws(ConfigurationException)

This operation tries to convert the speci�ed string (str) into an integer.
If the conversion fails, then the operation throws an exception containing
a descriptive error message. For example, if the scope parameter is
"foo", the localName parameter is "my_list[3]" and the con�guration
�le previously parsed was called example.cfg, then the message in the
exception will be:

example.cfg: Non-integer value for ’foo.my_list[3]’

The intention is that developers will iterate over all the strings within a
list and handcraft the localName parameter for each list element to re�ect
its position within the list: "my_list[1]", "my_list[2]", "my_list[3]"
and so on. In this way, the stringTo<Type>() operations can produce
informative exception messages if a data-type conversion fails. Note that
although many programming languages, including C++ and Java, index
arrays starting from 0, you should format the localName parameter so

122 CHAPTER 10. BEST PRACTICES

the index starts at 1. This is to be consistent with the error messages
produced by the SchemaValidator class.

Lists of mixed types can be used to emulate tables of information.
Lists denoting tables are best formatted in the form of a table, with a
comment line indicating the meaning of each column.

foo {

price_list = [

product price

#-------------------------

"milk", "$0.99",

"flour", "$2.17",

"jam", "$1.42"

];

}

Figure 10.2 contains Java code that calls lookupList() to retrive the
value of foo.price_list and then processes it row by row. The code calls
stringToUnitsWithFloat() to convert a string, for example, "$2.17", into
a ValueWithUnits object that provides operations to access the units
("$") and value (2.17).

When calling stringToUnitsWithFloat(), the code in Figure 10.2 con-
structs a value for the localName parameter that re�ects the table ele-
ment being accessed. If the price column in the �rst row of the table is
changed from "$0.99" to "car", then the code in Figure 10.2 will produce
the following informative error message:

someFile.cfg: invalid price (’car’) specified for

’foo.price_list[1].price’: should be ’<units> <float>’

where <units> are ’$’, ’EUR’

10.8 Use a Wrapper Class around Con�g4*

Perhaps you think Con�g4* is the best con�guration technology in exis-
tence and you cannot imagine ever wanting to use anything else. How-
ever, there is a good chance that within a few years, or even within a few
months, you will switch to something else that will not have the same
API as Con�g4*. This something else might be a di�erent con�gura-
tion technology, or it might be a newer version of Con�g4* that has a
backwards-incompatible API. When you make such a switch, you will
have to modify existing code that uses Con�g4*. Making such modi�ca-
tions can be time consuming if Con�g4* is used in many places in your
application.

10.9. SUMMARY 123

Figure 10.2: Code to process price_list

String[] priceList;

String product;

String priceStr;

String localName;

int i;

int numRows;

int row;

final int numColumns = 2;

ValueWithUnits vwu;

try {

priceList = cfg.lookupList(scope, "price_list");

numRows = priceList.length / numColumns;

for (i = 0; i < numRows; i++) {

product = priceList[i* numColumns + 0];

priceStr = priceList[i* numColumns + 1];

row = (i / numColumns) + 1;

vwu = cfg.stringToUnitsWithFloat(scope,

("price_list["+ row +"].price"),

"price", priceStr,

new String[]{"$", "EUR"});

priceCurrency = vwu.getUnits();

priceAmount = vwu.getFloatValue();

process(product, priceCurrency, priceAmount);

}

} catch(ConfigurationException ex) {

System.err.println(ex.getMessage());

}

You can greatly reduce the impact of moving to a di�erent con�gu-
ration technology (or upgrading to a newer version of Con�g4* that has
a backwards-incompatible API) by writing your own class that encap-
sulates the use of Con�g4*. Some of the demos supplied with Con�g4*
provide examples of such encapsulation. You can �nd a discussion of the
demos in Chapter 11.

10.9 Summary

This chapter has provided advice on best practices for using Con�g4*.
Following the advice will help you to develop applications that are �ex-

124 CHAPTER 10. BEST PRACTICES

ible, user-friendly and easy to maintain.

Chapter 11

Demonstration

Applications

11.1 Introduction

Several demonstration applications are supplied with implementations
of Con�g4*. You can �nd these in the demo directory hierarchy of your
distribution. I advise readers to examine the source code of these demos
while reading the discussion of the demos in this chapter.

11.2 The simple-encapsulation Demo

The simple-encapsulation demo de�nes a class that provides the con�g-
uration capabilities for a hypothetical Foo application. This application
requires only seven con�guration variables so, rather than expose general
purpose lookup-style operations, the FooConfiguration class provides ac-
cessor operations for these seven pieces of con�guration. The class sur-
rounds calls to Con�g4* with a try-catch clause so the information inside
a Con�g4* exception can be copied to an application-speci�c exception
that is thrown. In these simple ways, the FooConfiguration class encap-
sulates the use of Con�g4*, thus making it easy for a maintainer of the
Foo application to migrate to using a di�erent con�guration technology,
should the need ever arise.

Despite FooConfiguration having a simple-to-use API, the class en-
capsulates some powerful features of Con�g4*. First, the class allows

125

126 CHAPTER 11. DEMONSTRATION APPLICATIONS

the default security policy to be overridden (Section 5.4 on page 54).
Second, the class uses fallback con�guration (Section 3.6.3 on page 25)
so users can run the Foo application without a con�guration �le. The
source used for the fallback con�guration is an embedded string that the
Makefile or build.xml �le generates by use of the config2cpp or config2j
utility.

The FooConfiguration::parse() operation takes four string parame-
ters that specify the con�guration source (a �le or "exec#...") and scope
within it, and a security source and scope within it. Empty strings can
be passed for any or all of these parameters, thus making a user-speci�ed
con�guration source and user-speci�ed security policy optional.

If FooConfiguration were re-implemented to use, say, an XML �le or
a Java properties �le then the four parameters to parse() would likely be
replaced by a single parameter denoting the name of the XML �le or Java
properties �le. This change in the public API of FooConfiguration is
likely to have minimal knock-on e�ects in the rest of the Foo application.
In particular, the parsing of command-line arguments and subsequent
creation of a FooConfiguration object are the only pieces of code likely
to be a�ected.

11.3 The encapsulate-lookup-api Demo

The encapsulate-lookup-api demo de�nes a class that provides the con-
�guration capabilities for a hypothetical Foo application. This appli-
cation requires general purpose lookup-style operations when accessing
con�guration information. The FooConfiguration class provides its own
lookup-style operations that internally delegate to the lookup operations
of Con�g4*. In this way, the FooConfiguration class encapsulates the
use of Con�g4*, thus making it easy for a maintainer of the Foo applica-
tion to migrate to using a di�erent con�guration technology, should the
need ever arise.

The delegation logic is straightforward but a bit verbose due to the
need to surround calls to Con�g4* with a try-catch clause so the in-
formation inside a Con�g4* exception can be copied to an application-
speci�c exception that is thrown. This type of delegation logic occupies
only a few lines of code for each lookup-style operation. The verbosity
arises because Con�g4* provides so many lookup-style operations. Con-
�g4* has lookup operations for many di�erent types, and for each type
the lookup operation is overloaded to provide a �lookup with a default

11.4. THE LOG-LEVEL DEMO 127

value� and a �lookup without a default value.� To keep the volume of
code manageable, the demo does not provide the �lookup with a de-
fault value� version of operations. Instead, it uses fallback con�guration
(Section 3.6.3 on page 25) to provide default values.

11.4 The log-level Demo

Many applications have the ability to print diagnostic messages (as a
troubleshooting aid when something goes wrong), and use a command-
line option or variable in a con�guration �le to set the diagnostics level.
A primitive way to control the diagnostics level is to have a, say, a
"-d <int>" command-line option that sets the diagnostics level for the
entire application. However, this simplistic approach can result in �too
many� irrelevant diagnostics messages being printed, which can hinder
attempts to diagnose a problem.

A better approach is to provide an independent diagnostic level for
each component in an application. This makes it possible to selectively
turn on diagnostics for some components, while turning o� diagnostics
for other components. This �exible approach is becoming increasingly
common, though the granularity of a �component� varies widely. In some
applications, a component might be coarse-grained, such as an entire
functional subsystem or a plug-in. In other applications, a component
might be �ner-grained, such as individual classes (which is common in
Log4J-based applications), or even individual operations on a class.

If you want to use this �separate log-level for each component� tech-
nique in a Con�g4*-based application, then you might think of using a
separate con�guration variable for each component. For example:

log_level {

component1 = "2";

component2 = "0";

component3 = "0";

};

However, that approach does not scale well: if you have hundreds of
components in your application, then you will need hundreds of con�g-
uration variables to control their log levels.

My preferred approach is to use a two-column table that provides
a mapping from the wildcarded name of a component to a log level.
You can see an example of this in Figure 11.1. The string "A::op3"

128 CHAPTER 11. DEMONSTRATION APPLICATIONS

denotes operation op3() in the class A.1 The wildcard character ("*")
matches zero or more characters, and it might be used to match, say, the
names of all operations within a speci�c class ("B::*"), all create-style
operations, regardless of the class in which they appear ("*::create*"),
or all operations in all classes ("*").

Figure 11.1: Using a table to specify log levels

log_level = [

wildcarded component name log level

#--------------------------------------

"A::op3", "4",

"B::op1", "3",

"B::*", "1",

"*", "0",

];

When a component needs to determine its log level, it iterates through
the rows of the table, and uses the log level of the �rst matching wild-
carded entry.2 Thus, the last line of the table can specify a default log
level (by using "*" as the wildcarded component name), and earlier lines
in the table can specify a di�erent log level for individual components (or
groups of components). This combination of wildcarding and defaulting
means that the table can remain short even if an application contains
hundreds or thousands of components.

The log-level demo provides code that illustrates how to use a table
to specify wildcarded log levels.

11.5 The recipes Demo

The recipes demo provides an example of how to process scopes and
variables that contain the "uid-" pre�x. The recipes.cfg �le contains
a collection of uid-recipe scopes, like those shown in Figure 11.2.

The RecipeFileParser class provides a simple API for parsing such
a �le and iterating over the recipes contained within it. The parse()

operation within this class illustrates how to perform schema validation
for scopes and variables that contain the "uid-" pre�x. In addition, the

1C++ uses "::" as the scoping operator. For a Java application, an entry in the
�rst column of the table might be written as "com.example.mypackage.A.op3".

2Con�g4* provides a patternMatch() operation that an application can use for this
purpose.

11.6. THE EXTENDED-SCHEMA-VALIDATOR DEMO 129

Figure 11.2: File of recipes

uid-recipe {

name = "Tea";

ingredients = ["1 tea bag", "cold water", "milk"];

uid-step = "Pour cold water into the kettle";

uid-step = "Turn on the kettle";

uid-step = "Wait for the kettle to boil";

uid-step = "Pour boiled water into a cup";

uid-step = "Add tea bag to cup & leave for 3 minutes";

uid-step = "Remove tea bag";

uid-step = "Add a splash of milk if you want";

}

uid-recipe {

name = "Toast";

ingredients = ["Two slices of bread", "butter"];

uid-step = "Place bread in a toaster and turn on";

uid-step = "Wait for toaster to pop out the bread";

uid-step = "Remove bread from toaster and butter it";

}

parse() and getRecipeSteps() operations illustrate how to use pass a �l-
ter string such as "uid-recipe" or "uid-step" to listFullyScopedNames()
and listLocallyScopedNames() to get a list of "uid-" entries.

11.6 The extended-schema-validator Demo

This demo application illustrates how to enhance the Con�g4* schema
validator with knowledge of additional schema types.

The ExtendedSchemaValidator class illustrates how to write a subclass
of SchemaValidator. Most of the code in this class is boilerplate text that
delegates to the parent class. The important part of this class is the
implementation of registerTypes(), which registers a singleton instance
of each new schema type. For the purposes of this demo, this operation
registers the SchemaTypeHex class, which performs schema validation for
hexadecimal numbers.

A class that provides a new schema type must implement two oper-
ations:

checkRule() is invoked when the schema type is used in a schema rule.

isA() is invoked during schema validation of a con�guration �le.

130 CHAPTER 11. DEMONSTRATION APPLICATIONS

The SchemaTypeHex class illustrates how to implement the above opera-
tions. In addition, the class provides some utility functions that might
be useful to application developers: lookupHex(), stringToHex() and
isHex().

The FooConfiguration class encapsulates use of Con�g4* and the
new schema type. This class illustrates how to make use of the enhanced
schema validator and the utility functions provided by the SchemaTypeHex
class.

11.7 Summary

This chapter has discussed the demonstration applications supplied with
Con�g4*. To fully understand the information here, you should examine
the source code of the demonstration applications while reading this
chapter.

If you want more in-depth advice on how to exploit the full potential
of Con�g4*, then you might wish to read the Con�g4* Practical Usage

Guide.

Bibliography

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Addison-
Wesley Professional Computing Series, 2003.

[Sho04] Jim Shore. Fail fast. IEEE Software, pages 21�25, Sept/Oct
2004. www.martinfowler.com/ieeeSoftware/failFast.pdf.

[Wal02] Priscilla Walmsley. De�nitive XML Schema. Prentice Hall,
2002.

131

http://www.martinfowler.com/ieeeSoftware/failFast.pdf

	1 Introduction
	1.1 What is Config4*?
	1.2 Why Might You Want to Use Config4*?
	1.2.1 Benefits for Users
	1.2.2 Benefits for Developers

	1.3 The Collection of Config4* Manuals
	1.4 Structure of this Manual
	1.5 Obtaining and Installing Config4*

	I Overview
	2 Overview of Config4* Syntax
	2.1 Comments, Variables and Scopes
	2.2 Copying Default Values
	2.3 Including Other Files
	2.4 Including the Output of Commands
	2.5 Accessing the Environment
	2.6 Temporary Variables
	2.7 The @if-then-@else Statement
	2.8 Conditional @include and @copyFrom
	2.9 Append Assignment
	2.10 Conditional Assignment
	2.11 Centralizable and Adaptive Configuration
	2.12 The uid- prefix
	2.13 Summary

	3 Overview of the Config4* API
	3.1 Introduction
	3.2 Parsing Configuration Files
	3.3 Accessing Configuration Variables
	3.4 Scoped Names
	3.5 Presetting Configuration Variables
	3.6 Variations of parse()
	3.6.1 Parsing Centralized Configuration
	3.6.2 Parsing Embedded Configuration
	3.6.3 Using Fallback Configuration

	3.7 Default Values
	3.8 Listing the Contents of a Scope
	3.8.1 Local and Fully-scopes Names
	3.8.2 Determining the Type of an Entry
	3.8.3 Filtering Results with Patterns

	3.9 Working with Uid entries
	3.9.1 Expanded and Unexpanded Names
	3.9.2 The uidEquals() Operation
	3.9.3 Processing Uid Entries in Sequence

	3.10 Schema Validation
	3.10.1 Informative Error Messages
	3.10.2 Schemas for Uid Entries

	3.11 Summary

	4 Comparison with Other Technologies
	4.1 Introduction
	4.2 Command-line Options & Environment Variables
	4.3 Writing Your Own Configuration Parser
	4.4 Java Properties Files
	4.4.1 Unwanted Whitespace at the End of a Line
	4.4.2 Lack of Syntax Checking
	4.4.3 Semantically Poor
	4.4.4 Type-unsafe Lookup API

	4.5 Platform-specific Configuration Files
	4.6 XML-based Configuration Files
	4.6.1 Verbosity
	4.6.2 Limited Functionality
	4.6.3 Checking the Correctness of Input Files
	4.6.4 Memory Usage

	4.7 A Critique of Config4*
	4.8 Summary

	II Infrastructure
	5 Config4* Security
	5.1 The Need for Security
	5.2 The Config4* Security Mechanism
	5.3 The Default Security Policy
	5.4 Overriding the Default Security Policy
	5.5 Summary

	6 The config2cpp and config2j Utilities
	6.1 Introduction
	6.2 Basic Operation
	6.3 Using the Generated Class
	6.4 Tweaking the Generated Schema
	6.5 Summary

	7 The config4cpp and config4j Utilities
	7.1 Introduction
	7.1.1 Basic Operation
	7.1.2 Commonly Used Options

	7.2 The parse Command
	7.3 The validate Command
	7.4 The dump Command
	7.5 The dumpSec Command
	7.6 The print Command
	7.7 The type Command
	7.8 The slist and llist Commands
	7.9 Summary

	III Full Details of Syntax
	8 Configuration File Syntax
	8.1 Introduction
	8.2 Comments
	8.3 Strings
	8.4 Identifiers
	8.5 Assignment Statements
	8.6 Scopes
	8.7 The @include Statement
	8.8 The @copyFrom Statement
	8.9 The @if-then-@else Statement
	8.10 The @error Statement
	8.11 The @remove Statement
	8.12 Functions
	8.12.1 Querying the Operating System
	8.12.2 Accessing Environment Variables
	8.12.3 Executing External Commands
	8.12.4 Manipulating Strings and Lists
	8.12.5 Files and Directories
	8.12.6 Miscellaneous Functions

	9 The Config4* Schema Language
	9.1 Introduction
	9.2 Syntax
	9.2.1 Identifier Rules
	9.2.2 The @optional and @required Keywords
	9.2.3 Defining a New Type
	9.2.4 Available Schema Types
	9.2.4.1 String-based Types
	9.2.4.2 List-based Types

	9.2.5 Using String-based Arguments
	9.2.6 Ignore Rules

	9.3 Using Code to Define Schema Types
	9.4 Summary

	IV Effective Use of Config4*
	10 Best Practices
	10.1 Introduction
	10.2 Use a Top-level Scope for Each Application
	10.3 Naming Convention for Variables
	10.4 Fail-fast Configuration
	10.5 Zero Configuration
	10.6 Schema Validation for Fallback Configuration
	10.7 Working with Lists
	10.8 Use a Wrapper Class around Config4*
	10.9 Summary

	11 Demonstration Applications
	11.1 Introduction
	11.2 The simple-encapsulation Demo
	11.3 The encapsulate-lookup-api Demo
	11.4 The log-level Demo
	11.5 The recipes Demo
	11.6 The extended-schema-validator Demo
	11.7 Summary

